找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic and Computer Methods for Three-Manifolds; A. T. Fomenko,S. V. Matveev Book 1997 Springer Science+Business Media Dordrecht 1997

[復(fù)制鏈接]
樓主: Callow
31#
發(fā)表于 2025-3-26 22:45:26 | 只看該作者
32#
發(fā)表于 2025-3-27 02:51:50 | 只看該作者
33#
發(fā)表于 2025-3-27 06:31:17 | 只看該作者
The Haken Method,Recall that a closed surface . in a three-dimensional manifold . is normal relative to a given decomposition . of the manifold . into handles if
34#
發(fā)表于 2025-3-27 09:30:54 | 只看該作者
https://doi.org/10.1007/978-3-531-94203-2n intuitive and illustrative level. Knowledge of the parts of mathematical analysis and algebra that are usually taught in the first two years of a university study is desirable and sometimes even necessary. But for a persistent reader, willing to take some trouble, the comprehension of the terms “l(fā)
35#
發(fā)表于 2025-3-27 16:18:01 | 只看該作者
36#
發(fā)表于 2025-3-27 17:55:53 | 只看該作者
Methodische Anlage der Untersuchungies. Gluing by isotopic homeomorphisms gives one and the same result (this is proved below). It is therefore reasonable to investigate the group of homeomorphisms of a surface onto itself modulo homeomorphisms isotopic to the identity. Let . be a surface (perhaps, with boundary). The homeotopy group
37#
發(fā)表于 2025-3-28 00:14:18 | 只看該作者
Methodische Anlage der Untersuchunge edge onto the other. The space obtained from the polygons by identification of edges by means of all the chosen homeomorphisms will be denoted by .. As proved in Section 2.1, . is always a closed surface.
38#
發(fā)表于 2025-3-28 02:45:56 | 只看該作者
39#
發(fā)表于 2025-3-28 07:57:45 | 只看該作者
40#
發(fā)表于 2025-3-28 11:28:04 | 只看該作者
Der Diabetes mellitus in der Statistik,f how one topological space can lie inside another. The consideration of what at first glance seems to be a simple particular case—the position of a circle in .. or ..—leads to a very beautiful, rich and sophisticated theory, called .. A visual idea of a knot can be given by a piece of rope with the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 05:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝兴县| 定襄县| 绵竹市| 扎兰屯市| 乐东| 沅陵县| 潞西市| 鸡泽县| 平凉市| 长寿区| 乐平市| 利辛县| 大名县| 腾冲县| 大名县| 象州县| 射洪县| 隆林| 舟曲县| 裕民县| 香格里拉县| 页游| 慈溪市| 女性| 蕲春县| 张家界市| 关岭| 五大连池市| 周宁县| 宁蒗| 乡宁县| 茌平县| 罗城| 衢州市| 梁山县| 浦北县| 偏关县| 登封市| 巩义市| 静宁县| 榆树市|