找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic and Computer Methods for Three-Manifolds; A. T. Fomenko,S. V. Matveev Book 1997 Springer Science+Business Media Dordrecht 1997

[復(fù)制鏈接]
樓主: Callow
31#
發(fā)表于 2025-3-26 22:45:26 | 只看該作者
32#
發(fā)表于 2025-3-27 02:51:50 | 只看該作者
33#
發(fā)表于 2025-3-27 06:31:17 | 只看該作者
The Haken Method,Recall that a closed surface . in a three-dimensional manifold . is normal relative to a given decomposition . of the manifold . into handles if
34#
發(fā)表于 2025-3-27 09:30:54 | 只看該作者
https://doi.org/10.1007/978-3-531-94203-2n intuitive and illustrative level. Knowledge of the parts of mathematical analysis and algebra that are usually taught in the first two years of a university study is desirable and sometimes even necessary. But for a persistent reader, willing to take some trouble, the comprehension of the terms “l(fā)
35#
發(fā)表于 2025-3-27 16:18:01 | 只看該作者
36#
發(fā)表于 2025-3-27 17:55:53 | 只看該作者
Methodische Anlage der Untersuchungies. Gluing by isotopic homeomorphisms gives one and the same result (this is proved below). It is therefore reasonable to investigate the group of homeomorphisms of a surface onto itself modulo homeomorphisms isotopic to the identity. Let . be a surface (perhaps, with boundary). The homeotopy group
37#
發(fā)表于 2025-3-28 00:14:18 | 只看該作者
Methodische Anlage der Untersuchunge edge onto the other. The space obtained from the polygons by identification of edges by means of all the chosen homeomorphisms will be denoted by .. As proved in Section 2.1, . is always a closed surface.
38#
發(fā)表于 2025-3-28 02:45:56 | 只看該作者
39#
發(fā)表于 2025-3-28 07:57:45 | 只看該作者
40#
發(fā)表于 2025-3-28 11:28:04 | 只看該作者
Der Diabetes mellitus in der Statistik,f how one topological space can lie inside another. The consideration of what at first glance seems to be a simple particular case—the position of a circle in .. or ..—leads to a very beautiful, rich and sophisticated theory, called .. A visual idea of a knot can be given by a piece of rope with the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 05:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
友谊县| 昌图县| 葵青区| 喀喇沁旗| 登封市| 米泉市| 河间市| 右玉县| 开封县| 盐山县| 林芝县| 共和县| 襄城县| 绥中县| 青神县| 铜陵市| 河曲县| 遂宁市| 屏边| 崇左市| 北安市| 曲松县| 陵川县| 青州市| 固原市| 繁昌县| 津市市| 台北县| 凤阳县| 开平市| 碌曲县| 彰武县| 安阳市| 西丰县| 天台县| 荆门市| 崇仁县| 汉寿县| 鄂尔多斯市| 西乌珠穆沁旗| 富源县|