找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic and Computer Methods for Three-Manifolds; A. T. Fomenko,S. V. Matveev Book 1997 Springer Science+Business Media Dordrecht 1997

[復制鏈接]
樓主: Callow
31#
發(fā)表于 2025-3-26 22:45:26 | 只看該作者
32#
發(fā)表于 2025-3-27 02:51:50 | 只看該作者
33#
發(fā)表于 2025-3-27 06:31:17 | 只看該作者
The Haken Method,Recall that a closed surface . in a three-dimensional manifold . is normal relative to a given decomposition . of the manifold . into handles if
34#
發(fā)表于 2025-3-27 09:30:54 | 只看該作者
https://doi.org/10.1007/978-3-531-94203-2n intuitive and illustrative level. Knowledge of the parts of mathematical analysis and algebra that are usually taught in the first two years of a university study is desirable and sometimes even necessary. But for a persistent reader, willing to take some trouble, the comprehension of the terms “l(fā)
35#
發(fā)表于 2025-3-27 16:18:01 | 只看該作者
36#
發(fā)表于 2025-3-27 17:55:53 | 只看該作者
Methodische Anlage der Untersuchungies. Gluing by isotopic homeomorphisms gives one and the same result (this is proved below). It is therefore reasonable to investigate the group of homeomorphisms of a surface onto itself modulo homeomorphisms isotopic to the identity. Let . be a surface (perhaps, with boundary). The homeotopy group
37#
發(fā)表于 2025-3-28 00:14:18 | 只看該作者
Methodische Anlage der Untersuchunge edge onto the other. The space obtained from the polygons by identification of edges by means of all the chosen homeomorphisms will be denoted by .. As proved in Section 2.1, . is always a closed surface.
38#
發(fā)表于 2025-3-28 02:45:56 | 只看該作者
39#
發(fā)表于 2025-3-28 07:57:45 | 只看該作者
40#
發(fā)表于 2025-3-28 11:28:04 | 只看該作者
Der Diabetes mellitus in der Statistik,f how one topological space can lie inside another. The consideration of what at first glance seems to be a simple particular case—the position of a circle in .. or ..—leads to a very beautiful, rich and sophisticated theory, called .. A visual idea of a knot can be given by a piece of rope with the
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-16 08:00
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
乐业县| 枞阳县| 长宁县| 上思县| 务川| 澄迈县| 大方县| 称多县| 巨鹿县| 竹北市| 隆化县| 佛冈县| 曲周县| 西充县| 大厂| 聂荣县| 义乌市| 海林市| 承德县| 百色市| 江阴市| 航空| 宿松县| 马鞍山市| 莱芜市| 依安县| 濉溪县| 揭阳市| 疏勒县| 东海县| 成安县| 通榆县| 通州区| 贵州省| 化隆| 横峰县| 平原县| 张家界市| 阳高县| 昌乐县| 五原县|