找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Topology and Classification of 3-Manifolds; Sergei Matveev Textbook 2007Latest edition Springer-Verlag Berlin Heidelberg 2007

[復(fù)制鏈接]
樓主: 自由才謹慎
11#
發(fā)表于 2025-3-23 10:25:38 | 只看該作者
12#
發(fā)表于 2025-3-23 17:05:34 | 只看該作者
,über Schornstein, Saugzug und Unterwind,n in .. It would be desirable to have a finite number of 3-manifolds in each term of the filtration, all of them being in some sense simpler than those in the subsequent terms. A useful tool here would be a measure of “complexity” of a 3-manifold. Given such a measure, we might hope to enumerate all
13#
發(fā)表于 2025-3-23 20:31:29 | 只看該作者
14#
發(fā)表于 2025-3-24 00:22:00 | 只看該作者
Der Prototyp des Dandys: George B. Brummell,s based on that method have exponential complexity and hence are impractical. In particular, although the recognition problem for Haken manifolds has an algorithmic solution, there is no chance of it being be realized by a computer program, at least in the foreseeable future. On the other hand, quit
15#
發(fā)表于 2025-3-24 05:49:56 | 只看該作者
16#
發(fā)表于 2025-3-24 06:58:52 | 只看該作者
17#
發(fā)表于 2025-3-24 11:22:31 | 只看該作者
Algorithmic Topology and Classification of 3-Manifolds
18#
發(fā)表于 2025-3-24 17:11:42 | 只看該作者
19#
發(fā)表于 2025-3-24 22:13:06 | 只看該作者
3-Manifold Recognizer, an algorithm at all in the formal meaning of this term). The problem of finding an efficient partial algorithm for answering a particular class of geometric questions is in itself a well-stated mathematical problem. Trying to solve it, we inevitably discover new structural properties of geometric objects.
20#
發(fā)表于 2025-3-25 02:38:11 | 只看該作者
1431-1550 t topics in algorithmic 3-dimensional topology, culminating with the recognition procedure for Haken manifolds and including the up-to-date results in computer enumeration of 3-manifolds. Originating from lecture notes of various courses given by the author over a decade, the book is intended to com
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桓台县| 阜平县| 浦县| 米林县| 石首市| 玛纳斯县| 额尔古纳市| 晋江市| 启东市| 施秉县| 和平区| 嘉峪关市| 中西区| 留坝县| 富平县| 兰考县| 龙山县| 鄄城县| 四会市| 余江县| 安仁县| 桐城市| 桃园县| 鹤庆县| 珲春市| 襄樊市| 扬州市| 双峰县| 桂东县| 石门县| 南开区| 泾川县| 教育| 项城市| 大连市| 三明市| 大荔县| 肃南| 青阳县| 永修县| 勐海县|