找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Number Theory; Third International Joe P. Buhler Conference proceedings 1998 Springer-Verlag Berlin Heidelberg 1998 Analysis.P

[復(fù)制鏈接]
樓主: EFFCT
51#
發(fā)表于 2025-3-30 10:49:42 | 只看該作者
52#
發(fā)表于 2025-3-30 12:53:17 | 只看該作者
53#
發(fā)表于 2025-3-30 20:05:37 | 只看該作者
,Parallel implementation of Sch?nhage’s integer GCD algorithm,s implemented in ., a computer algebra library for parallel symbolic computation we have developed..Sch?nhage‘s parallel algorithm is analyzed by using a message-passing model of computation. Experimental results on distributed memory architectures, such as the Intel Paragon, confirm the analysis.
54#
發(fā)表于 2025-3-30 23:24:11 | 只看該作者
The complete analysis of the binary Euclidean algorithm,l analysis of the number of steps, based on a heuristic model and some unproven conjecture. Our methods are quite different, not relying on heuristic hypothesis or conjecture, and more general, since they allow us to study all the parameters of the binary continued fraction expansion.
55#
發(fā)表于 2025-3-31 03:31:23 | 只看該作者
,Cyclotomy primality proving — Recent developments, an overview of cyclotomy from the perspective of the recent research and implementation. We also discuss the drawbacks of the algorithm — the overpolynomial run time and lack of certificates — and mention some open problems which may lead to future improvements.
56#
發(fā)表于 2025-3-31 07:21:48 | 只看該作者
57#
發(fā)表于 2025-3-31 11:33:19 | 只看該作者
0302-9743 , Oregon, USA, in June 1998..The volume presents 46 revised full papers together with two invited surveys. The papers are organized in chapters on gcd algorithms, primality, factoring, sieving, analytic number theory, cryptography, linear algebra and lattices, series and sums, algebraic number field
58#
發(fā)表于 2025-3-31 14:30:11 | 只看該作者
59#
發(fā)表于 2025-3-31 19:22:21 | 只看該作者
60#
發(fā)表于 2025-4-1 01:26:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 15:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桦甸市| 临武县| 滦南县| 祁东县| 巴东县| 昭苏县| 基隆市| 新野县| 昭平县| 中江县| 深泽县| 南陵县| 建瓯市| 微山县| 广水市| 桐庐县| 泽州县| 宝鸡市| 平塘县| 巨野县| 山东| 常德市| 榆社县| 英吉沙县| 宁远县| 象山县| 文安县| 河东区| 蕲春县| 清苑县| 西华县| 巴马| 曲沃县| 峡江县| 阿瓦提县| 望江县| 自治县| 鹤岗市| 永新县| 神农架林区| 泗阳县|