找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Learning Theory - ALT ‘92; Third Workshop, ALT Shuji Doshita,Koichi Furukawa,Toyaki Nishida Conference proceedings 1993 Spring

[復(fù)制鏈接]
查看: 37481|回復(fù): 65
樓主
發(fā)表于 2025-3-21 17:32:43 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Algorithmic Learning Theory - ALT ‘92
期刊簡(jiǎn)稱Third Workshop, ALT
影響因子2023Shuji Doshita,Koichi Furukawa,Toyaki Nishida
視頻videohttp://file.papertrans.cn/153/152980/152980.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Algorithmic Learning Theory - ALT ‘92; Third Workshop, ALT  Shuji Doshita,Koichi Furukawa,Toyaki Nishida Conference proceedings 1993 Spring
影響因子This volume contains the papers that were presented at theThird Workshop onAlgorithmic Learning Theory, held in Tokyoin October 1992. In addition to 3invited papers, the volumecontains 19 papers accepted for presentation,selected from29 submitted extended abstracts. The ALT workshops have beenheld annually since 1990 and are organized and sponsored bytheJapanese Society for Artificial Intelligence. The mainobjective of these workshops is to provide an open forum fordiscussions and exchanges of ideasbetween researchers fromvarious backgrounds in this emerging,interdisciplinaryfield of learning theory. The volume is organized intopartson learning via query, neural networks, inductive inference,analogical reasoning, and approximate learning.
Pindex Conference proceedings 1993
The information of publication is updating

書目名稱Algorithmic Learning Theory - ALT ‘92影響因子(影響力)




書目名稱Algorithmic Learning Theory - ALT ‘92影響因子(影響力)學(xué)科排名




書目名稱Algorithmic Learning Theory - ALT ‘92網(wǎng)絡(luò)公開度




書目名稱Algorithmic Learning Theory - ALT ‘92網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algorithmic Learning Theory - ALT ‘92被引頻次




書目名稱Algorithmic Learning Theory - ALT ‘92被引頻次學(xué)科排名




書目名稱Algorithmic Learning Theory - ALT ‘92年度引用




書目名稱Algorithmic Learning Theory - ALT ‘92年度引用學(xué)科排名




書目名稱Algorithmic Learning Theory - ALT ‘92讀者反饋




書目名稱Algorithmic Learning Theory - ALT ‘92讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:37:51 | 只看該作者
From inductive inference to algorithmic learning theory,ucing apparently “senseless” hypotheses can solve problems unsolvable by “reasonable” learning strategies) and learning from good examples (“much less” information can lead to much more learning power). Recently, it has been shown that these phenomena also hold in the world of polynomial-time algori
板凳
發(fā)表于 2025-3-22 03:46:42 | 只看該作者
地板
發(fā)表于 2025-3-22 06:29:59 | 只看該作者
On learning systolic languages,s a kind of network consisting of uniformly connected processors(finite automata)..In this article, we show that the class of binary systolic tree languages is learnable in polynomial time from the learning protocol what is called minimally adequate teacher..Since the class of binary systolic tree l
5#
發(fā)表于 2025-3-22 09:51:47 | 只看該作者
A note on the query complexity of learning DFA,te — the query complexity — the number of membership and equivalence queries for learning deterministic finite automata. We first show two lower bounds in two different learning situations. Then we investigate the query complexity in general setting, and show some trade-off phenomenon between the nu
6#
發(fā)表于 2025-3-22 13:04:48 | 只看該作者
Polynomial-time MAT learning of multilinear logic programs,. that the teacher has, with membership queries and equivalence queries. In the class of multilinear programs, we show some programs which have not been proved to be MAT learnable previously. If a multilinear program .. represents .. that the teacher has, then the total running time of our learning
7#
發(fā)表于 2025-3-22 18:19:42 | 只看該作者
Iterative weighted least squares algorithms for neural networks classifiers,itly calculated for the network with only one neuron. It can be interpreted as a weighted covariance matrix of input vectors. A learning algorithm is presented on the basis of Fisher‘s scoring method. It is shown that the algorithm can be interpreted as iterations of weighted least square method. Th
8#
發(fā)表于 2025-3-23 00:10:39 | 只看該作者
9#
發(fā)表于 2025-3-23 01:26:01 | 只看該作者
10#
發(fā)表于 2025-3-23 05:52:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 08:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
家居| 邮箱| 府谷县| 凤阳县| 大英县| 荃湾区| 平果县| 武川县| 乐陵市| 定日县| 舒城县| 上犹县| 武城县| 钟祥市| 内黄县| 乐清市| 夏邑县| 合肥市| 合川市| 石首市| 四平市| 安西县| 绵竹市| 石台县| 志丹县| 鄄城县| 鄂伦春自治旗| 论坛| 乃东县| 霍邱县| 梁河县| 大连市| 茂名市| 巨鹿县| 彭泽县| 澄迈县| 安塞县| 庆城县| 昌吉市| 建湖县| 开化县|