找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Learning Theory; 24th International C Sanjay Jain,Rémi Munos,Thomas Zeugmann Conference proceedings 2013 Springer-Verlag Berlin

[復(fù)制鏈接]
查看: 38634|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:56:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Algorithmic Learning Theory
期刊簡稱24th International C
影響因子2023Sanjay Jain,Rémi Munos,Thomas Zeugmann
視頻videohttp://file.papertrans.cn/153/152976/152976.mp4
發(fā)行地址Conference proceedings of the International Conference on Algorithmic Learning Theory
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Algorithmic Learning Theory; 24th International C Sanjay Jain,Rémi Munos,Thomas Zeugmann Conference proceedings 2013 Springer-Verlag Berlin
影響因子This book constitutes the proceedings of the 24th International Conference on Algorithmic Learning Theory, ALT 2013, held in Singapore in October 2013, and co-located with the 16th International Conference on Discovery Science, DS 2013. The 23 papers presented in this volume were carefully reviewed and selected from 39 submissions. In addition the book contains 3 full papers of invited talks. The papers are organized in topical sections named: online learning, inductive inference and grammatical inference, teaching and learning from queries, bandit theory, statistical learning theory, Bayesian/stochastic learning, and unsupervised/semi-supervised learning.
Pindex Conference proceedings 2013
The information of publication is updating

書目名稱Algorithmic Learning Theory影響因子(影響力)




書目名稱Algorithmic Learning Theory影響因子(影響力)學(xué)科排名




書目名稱Algorithmic Learning Theory網(wǎng)絡(luò)公開度




書目名稱Algorithmic Learning Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algorithmic Learning Theory被引頻次




書目名稱Algorithmic Learning Theory被引頻次學(xué)科排名




書目名稱Algorithmic Learning Theory年度引用




書目名稱Algorithmic Learning Theory年度引用學(xué)科排名




書目名稱Algorithmic Learning Theory讀者反饋




書目名稱Algorithmic Learning Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:13:54 | 只看該作者
Conference proceedings 2013, and co-located with the 16th International Conference on Discovery Science, DS 2013. The 23 papers presented in this volume were carefully reviewed and selected from 39 submissions. In addition the book contains 3 full papers of invited talks. The papers are organized in topical sections named: on
板凳
發(fā)表于 2025-3-22 04:19:58 | 只看該作者
地板
發(fā)表于 2025-3-22 06:44:10 | 只看該作者
5#
發(fā)表于 2025-3-22 10:40:27 | 只看該作者
Learning and Optimizing with Preferencesat are the advantages of preferences compared to other forms of information, and what combinatorial and learning theoretical challenges do they give rise to? I will present important problems and survey results.
6#
發(fā)表于 2025-3-22 13:19:06 | 只看該作者
Exact Learning from Membership Queries: Some Techniques, Results and New Directionsdentifying, Active Learning, Guessing Game, Testing, Functional Verification, Hitting Set and Black Box PIT from Substitution or Membership Queries..In this survey we give some of the results known from the literature, different techniques used mainly for the problem of exact learning and new directions that we think are worth investigating.
7#
發(fā)表于 2025-3-22 20:22:42 | 只看該作者
Conference proceedings 2013line learning, inductive inference and grammatical inference, teaching and learning from queries, bandit theory, statistical learning theory, Bayesian/stochastic learning, and unsupervised/semi-supervised learning.
8#
發(fā)表于 2025-3-23 00:30:35 | 只看該作者
9#
發(fā)表于 2025-3-23 02:29:15 | 只看該作者
,Editors’ Introduction,ime several models of learning have been developed which study different aspects of learning. In the following we describe in brief the invited talks and the contributed papers for ALT 2013 held in Singapore.
10#
發(fā)表于 2025-3-23 06:26:53 | 只看該作者
Efficient Algorithms for Combinatorial Online Predictionin finite but exponentially many concepts and hence the complexity issue arises. In this paper, we survey some recent results on universal and efficient implementations of low-regret algorithmic frameworks such as Follow the Regularized Leader (FTRL) and Follow the Perturbed Leader (FPL).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
久治县| 潞城市| 玛沁县| 东方市| 临湘市| 灵山县| 永清县| 景谷| 林口县| 新密市| 雅安市| 冷水江市| 普宁市| 高青县| 盖州市| 循化| 贵南县| 东海县| 喀喇| 阳东县| 和顺县| 电白县| 怀安县| 宝鸡市| 桐城市| 沐川县| 基隆市| 宜阳县| 丹棱县| 台湾省| 明星| 太原市| 余江县| 将乐县| 杭州市| 明水县| 高邑县| 临漳县| 高碑店市| 久治县| 增城市|