找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Learning Theory; 6th International Wo Klaus P. Jantke,Takeshi Shinohara,Thomas Zeugmann Conference proceedings 1995 Springer-Ve

[復制鏈接]
查看: 6396|回復: 64
樓主
發(fā)表于 2025-3-21 18:49:11 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Algorithmic Learning Theory
期刊簡稱6th International Wo
影響因子2023Klaus P. Jantke,Takeshi Shinohara,Thomas Zeugmann
視頻videohttp://file.papertrans.cn/153/152965/152965.mp4
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Algorithmic Learning Theory; 6th International Wo Klaus P. Jantke,Takeshi Shinohara,Thomas Zeugmann Conference proceedings 1995 Springer-Ve
影響因子This book constitutes the refereed proceedings of the 6th International Workshop on Algorithmic Learning Theory, ALT ‘95, held in Fukuoka, Japan, in October 1995..The book contains 21 revised full papers selected from 46 submissions together with three invited contributions. It covers all current areas related to algorithmic learning theory, in particular the theory of machine learning, design and analysis of learning algorithms, computational logic aspects, inductive inference, learning via queries, artificial and biologicial neural network learning, pattern recognition, learning by analogy, statistical learning, inductive logic programming, robot learning, and gene analysis.
Pindex Conference proceedings 1995
The information of publication is updating

書目名稱Algorithmic Learning Theory影響因子(影響力)




書目名稱Algorithmic Learning Theory影響因子(影響力)學科排名




書目名稱Algorithmic Learning Theory網(wǎng)絡公開度




書目名稱Algorithmic Learning Theory網(wǎng)絡公開度學科排名




書目名稱Algorithmic Learning Theory被引頻次




書目名稱Algorithmic Learning Theory被引頻次學科排名




書目名稱Algorithmic Learning Theory年度引用




書目名稱Algorithmic Learning Theory年度引用學科排名




書目名稱Algorithmic Learning Theory讀者反饋




書目名稱Algorithmic Learning Theory讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:32:46 | 只看該作者
Efficient learning of real time one-counter automata, by first learning an initial segment, .., of the infinite state machine that accepts the unknown language and then decomposing it into a complete control structure and a partial counter. A new, efficient ROCA decomposition algorithm, which will be presented in detail, allows this result. The decomp
板凳
發(fā)表于 2025-3-22 00:32:50 | 只看該作者
地板
發(fā)表于 2025-3-22 08:32:09 | 只看該作者
Language learning from membership queries and characteristic examples,istic example of a language . is an element of . which includes, in a sense, sufficient information to represent .. Every context-free language can be divided into a finite number of languages each of which has a characteristic example and it is decidable whether or not a context-free language has a
5#
發(fā)表于 2025-3-22 10:29:42 | 只看該作者
Learning unions of tree patterns using queries,he union of the languages defined by each first-order terms in the set. Unfortunately, the class .. not polynomial time learnable in most of learning frameworks under standard assumptions in computational complexity theory. To overcome this computational hardness, we relax the learning problem by al
6#
發(fā)表于 2025-3-22 15:03:03 | 只看該作者
Inductive constraint logic,systems employ examples as true and false ground facts (or clauses), we view examples as interpretations which are true or false for the target theory. This viewpoint allows to reconcile the inductive logic programming paradigm with classical attribute value learning in the sense that the latter is
7#
發(fā)表于 2025-3-22 17:51:30 | 只看該作者
Incremental learning of logic programs,using the already defined predicates as background knowledge. Our class properly contains the class of innermost simple programs of [20] and the class of hereditary programs of [12,13]. Standard programs for multiplication, quick-sort, reverse and merge are a few examples of programs that can be han
8#
發(fā)表于 2025-3-23 00:02:57 | 只看該作者
Learning orthogonal ,-Horn formulas,le. Recently, it was pointed out that the problem of PAC-learning for these classes with membership queries can be reduced to that of query learning for the class of .-quasi Horn formulas with membership and equivalence queries. A .-quasi Horn formula is a CNF formula with each clause containing at
9#
發(fā)表于 2025-3-23 04:27:50 | 只看該作者
Machine induction without revolutionary paradigm shifts,l approaches to forbidding large changes in the size of programs conjectured..One approach, called ., requires all the programs conjectured on the way to success to be nearly (i.e., within a recursive function of) minimal size. It is shown that this very conservative constraint allows learning infin
10#
發(fā)表于 2025-3-23 07:58:00 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
库尔勒市| 鸡东县| 焦作市| 温州市| 永福县| 新和县| 廉江市| 米泉市| 密云县| 井冈山市| 丰原市| 肥城市| 炉霍县| 安丘市| 鄄城县| 交城县| 丽水市| 漠河县| 宣汉县| 西贡区| 南溪县| 资兴市| 博客| 老河口市| 武安市| 永顺县| 莎车县| 碌曲县| 文安县| 砀山县| 泉州市| 南昌县| 磴口县| 孝义市| 麻栗坡县| 德保县| 新化县| 乐东| 晋江市| 金坛市| 玉树县|