找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Game Theory; Third International Spyros Kontogiannis,Elias Koutsoupias,Paul G. Spir Conference proceedings 2010 Springer-Verla

[復(fù)制鏈接]
樓主: autoantibodies
21#
發(fā)表于 2025-3-25 07:16:22 | 只看該作者
22#
發(fā)表于 2025-3-25 08:48:53 | 只看該作者
How Do You Like Your Equilibrium Selection Problems? Hard, or Very Hard?,cent progress showing that the equilibria that are found by the Lemke-Howson algorithm, as well as related homotopy methods, are PSPACE-complete to compute. Thus we show that there are no short cuts to the Lemke-Howson solutions, subject only to the hardness of PSPACE. I mention some open problems.
23#
發(fā)表于 2025-3-25 12:20:23 | 只看該作者
Nash Equilibria in Fisher Market,-buyer market game. Surprisingly, all the NE of this game turn out to be symmetric and the corresponding payoffs constitute a piecewise linear concave curve. We also study the correlated equilibria of this game and show that third-party mediation does not help to achieve a better payoff than NE payoffs.
24#
發(fā)表于 2025-3-25 19:15:33 | 只看該作者
25#
發(fā)表于 2025-3-25 21:10:48 | 只看該作者
On the Existence of Optimal Taxes for Network Congestion Games with Heterogeneous Users,f homogeneous and heterogeneous users differ sharply as far as the existence of strongly-optimal taxes is concerned: there are parallel-link games with linear latencies and heterogeneous users that do not admit strongly-optimal taxes.
26#
發(fā)表于 2025-3-26 03:41:47 | 只看該作者
27#
發(fā)表于 2025-3-26 07:01:42 | 只看該作者
How Do You Like Your Equilibrium Selection Problems? Hard, or Very Hard?,s necessarily rather weak, in the sense that PPAD is only know to lie “between P and NP”, and there is not a strong prospect of showing it to be as hard as NP. Of course, the problem of finding an equilibrium that has certain sought-after properties should be at least as hard as finding an unrestric
28#
發(fā)表于 2025-3-26 10:36:46 | 只看該作者
29#
發(fā)表于 2025-3-26 14:03:57 | 只看該作者
30#
發(fā)表于 2025-3-26 18:40:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 18:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长兴县| 鹿泉市| 晋州市| 崇仁县| 衡阳市| 朔州市| 乌恰县| 九江市| 宁夏| 宁明县| 汤原县| 南川市| 醴陵市| 宁蒗| 宝应县| 广元市| 佛教| 瑞昌市| 含山县| 新兴县| 游戏| 农安县| 涟源市| 武山县| 永平县| 务川| 阿拉尔市| 萨嘎县| 古交市| 溧阳市| 秭归县| 宝丰县| 随州市| 仙居县| 公安县| 怀远县| 桐城市| 莫力| 称多县| 工布江达县| 德昌县|