找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Game Theory; 12th International S Dimitris Fotakis,Evangelos Markakis Conference proceedings 2019 Springer Nature Switzerland A

[復(fù)制鏈接]
樓主: 使作嘔
51#
發(fā)表于 2025-3-30 11:24:14 | 只看該作者
Der Anti-Stress-Trainer für FührungsfrauenTherefore, giving the seller absolute freedom over the design space results in absurd conclusions; competing with the optimal mechanism is hopeless. Instead, in this paper we study four broad classes of mechanisms, each characterized by a distinct use of randomness. Our goal is twofold: to explore t
52#
發(fā)表于 2025-3-30 13:17:31 | 只看該作者
53#
發(fā)表于 2025-3-30 20:30:44 | 只看該作者
54#
發(fā)表于 2025-3-30 23:16:33 | 只看該作者
Kleine Stresskunde: Das Adrenalinzeitalter,how that if players can use arbitrary Turing machines to compute their strategies, then every computational game has an .-Nash equilibrium. These results may shed light on competitive settings where the availability of more running time or faster algorithms can lead to a “computational arms race”, p
55#
發(fā)表于 2025-3-31 04:14:43 | 只看該作者
Kleine Stresskunde: Das Adrenalinzeitalter,ng if a game has a rational valued Nash equilibrium. These results also hold for 3-player zero-sum games..Our proof methodology applies to corresponding decision problems about symmetric Nash equilibria in symmetric games as well, and in particular our new results carry over to the symmetric setting
56#
發(fā)表于 2025-3-31 05:18:16 | 只看該作者
Der Anti-Stress-Trainer für Juristenes where the Stackelberg Equilibria can be computed efficiently if the Nash equilibrium in its zero-sum form could be computed efficiently, in general, structural properties that allow for efficient computation of Nash equilibrium in zero-sum games are not sufficient for computing Stackelberg equili
57#
發(fā)表于 2025-3-31 09:17:51 | 只看該作者
58#
發(fā)表于 2025-3-31 16:41:20 | 只看該作者
59#
發(fā)表于 2025-3-31 19:59:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 17:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
关岭| 军事| 上思县| 麻城市| 房山区| 云阳县| 临沂市| 吉水县| 霍州市| 双鸭山市| 庐江县| 禹城市| 龙口市| 肥城市| 吴江市| 灵宝市| 内黄县| 郑州市| 大石桥市| 唐海县| 全州县| 五莲县| 嘉峪关市| 遂平县| 昆山市| 屯昌县| 孝感市| 安顺市| 固阳县| 德格县| 盖州市| 洪雅县| 巴彦县| 昭平县| 昌吉市| 通化市| 凉城县| 乌什县| 大同市| 永州市| 攀枝花市|