找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Game Theory; First International Burkhard Monien,Ulf-Peter Schroeder Conference proceedings 2008 Springer-Verlag Berlin Heidel

[復制鏈接]
樓主: 浮淺
21#
發(fā)表于 2025-3-25 06:20:32 | 只看該作者
22#
發(fā)表于 2025-3-25 08:31:37 | 只看該作者
https://doi.org/10.1007/978-3-662-26465-2changed between two players in order to compute the value of a polynomial or rational function depending on an input distributed between the two players. We define a general algebraic model, where the involved functions can be computed with the natural operations additions, multiplications and divis
23#
發(fā)表于 2025-3-25 15:41:58 | 只看該作者
24#
發(fā)表于 2025-3-25 18:35:07 | 只看該作者
25#
發(fā)表于 2025-3-25 21:05:54 | 只看該作者
26#
發(fā)表于 2025-3-26 00:17:07 | 只看該作者
MedR Schriftenreihe Medizinrechtmitations of the approximability of the problem is an important challenge. The purpose of this document is to review a set of results, which have contributed significantly, and currently are the state-of-art with respect to the polynomial time construction of approximate Nash equilibria in bimatrix games. .
27#
發(fā)表于 2025-3-26 07:18:25 | 只看該作者
The Search for Equilibrium Conceptsften in the form of equilibrium concepts. There are several desiderata one might expect from an equilibrium concept: First and foremost it should be natural and convincing as a prediction of agent behavior. Then it should be . — all games should have it, because otherwise it is an incomplete predict
28#
發(fā)表于 2025-3-26 08:43:56 | 只看該作者
29#
發(fā)表于 2025-3-26 15:28:49 | 只看該作者
Approximate Equilibria for Strategic Two Person Gamesmitations of the approximability of the problem is an important challenge. The purpose of this document is to review a set of results, which have contributed significantly, and currently are the state-of-art with respect to the polynomial time construction of approximate Nash equilibria in bimatrix
30#
發(fā)表于 2025-3-26 17:54:11 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-19 17:39
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
淳安县| 铜陵市| 长沙县| 民勤县| 喜德县| 长武县| 新乡县| 奇台县| 岳池县| 响水县| 加查县| 莎车县| 邳州市| 丁青县| 甘泉县| 阿拉善左旗| 桂林市| 分宜县| 毕节市| 吉木乃县| 乐业县| 辛集市| 彭泽县| 恭城| 唐河县| 乌苏市| 舒城县| 吉隆县| 浪卡子县| 甘洛县| 桃园县| 河源市| 武汉市| 宜宾市| 铜梁县| 西昌市| 吴川市| 昌邑市| 辽阳市| 三门峡市| 东兴市|