找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Game Theory; First International Burkhard Monien,Ulf-Peter Schroeder Conference proceedings 2008 Springer-Verlag Berlin Heidel

[復制鏈接]
樓主: 浮淺
21#
發(fā)表于 2025-3-25 06:20:32 | 只看該作者
22#
發(fā)表于 2025-3-25 08:31:37 | 只看該作者
https://doi.org/10.1007/978-3-662-26465-2changed between two players in order to compute the value of a polynomial or rational function depending on an input distributed between the two players. We define a general algebraic model, where the involved functions can be computed with the natural operations additions, multiplications and divis
23#
發(fā)表于 2025-3-25 15:41:58 | 只看該作者
24#
發(fā)表于 2025-3-25 18:35:07 | 只看該作者
25#
發(fā)表于 2025-3-25 21:05:54 | 只看該作者
26#
發(fā)表于 2025-3-26 00:17:07 | 只看該作者
MedR Schriftenreihe Medizinrechtmitations of the approximability of the problem is an important challenge. The purpose of this document is to review a set of results, which have contributed significantly, and currently are the state-of-art with respect to the polynomial time construction of approximate Nash equilibria in bimatrix games. .
27#
發(fā)表于 2025-3-26 07:18:25 | 只看該作者
The Search for Equilibrium Conceptsften in the form of equilibrium concepts. There are several desiderata one might expect from an equilibrium concept: First and foremost it should be natural and convincing as a prediction of agent behavior. Then it should be . — all games should have it, because otherwise it is an incomplete predict
28#
發(fā)表于 2025-3-26 08:43:56 | 只看該作者
29#
發(fā)表于 2025-3-26 15:28:49 | 只看該作者
Approximate Equilibria for Strategic Two Person Gamesmitations of the approximability of the problem is an important challenge. The purpose of this document is to review a set of results, which have contributed significantly, and currently are the state-of-art with respect to the polynomial time construction of approximate Nash equilibria in bimatrix
30#
發(fā)表于 2025-3-26 17:54:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 15:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
吉隆县| 哈巴河县| 阜新市| 中宁县| 蕲春县| 天全县| 资中县| 荥经县| 石泉县| 绵竹市| 左贡县| 咸丰县| 青田县| 六枝特区| 青川县| 临安市| 巩留县| 翁源县| 双城市| 武山县| 雅江县| 鹤壁市| 昌平区| 景洪市| 诸城市| 治多县| 铜鼓县| 汤原县| 嘉兴市| 张北县| 甘肃省| 鸡西市| 美姑县| 织金县| 龙江县| 阿巴嘎旗| 南雄市| 工布江达县| 永登县| 泾源县| 尼木县|