找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Foundations of Robotics XII; Proceedings of the T Ken Goldberg,Pieter Abbeel,Lauren Miller Book 2020 Springer Nature Switzerlan

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 05:13:36 | 只看該作者
Multiple Start Branch and Prune Filtering Algorithm for Nonconvex Optimization,on. Many approaches have been developed to carry out such nonconvex optimization, but they suffer drawbacks including large computation time, require tuning of multiple unintuitive parameters and are unable to find multiple local/global minima. In this work we introduce multiple start branch and pru
22#
發(fā)表于 2025-3-25 09:31:35 | 只看該作者
23#
發(fā)表于 2025-3-25 13:47:33 | 只看該作者
24#
發(fā)表于 2025-3-25 17:25:20 | 只看該作者
25#
發(fā)表于 2025-3-25 21:23:02 | 只看該作者
A Certifiably Correct Algorithm for Synchronization over the Special Euclidean Group,of their pairwise relative transforms .. Examples of this class include the foundational problems of pose-graph simultaneous localization and mapping (SLAM) (in robotics) and camera motion estimation (in computer vision), among others. This problem is typically formulated as a nonconvex maximum-like
26#
發(fā)表于 2025-3-26 03:12:35 | 只看該作者
Autonomous Visual Rendering using Physical Motion,ens, brushes, or other tools. This work uses ergodicity as a control objective that translates planar visual input to physical motion without preprocessing (e.g., image processing, motion primitives). We achieve comparable results to existing drawing methods, while reducing the algorithmic complexit
27#
發(fā)表于 2025-3-26 07:14:52 | 只看該作者
Cloud-based Motion Plan Computation for Power-Constrained Robots,loud-based compute service. To meet the requirements of an interactive and dynamic scenario, robot motion planning may need more computing power than is available on robots designed for reduced weight and power consumption (e.g., battery powered mobile robots). In our method, the robot communicates
28#
發(fā)表于 2025-3-26 09:57:12 | 只看該作者
Combining System Design and Path Planning,ted to find the best design that optimizes its motion between two given configurations. Solving individual path planning problems for all possible designs and selecting the best result would be a straightforward approach for very simple cases. We propose a more efficient approach that combines discr
29#
發(fā)表于 2025-3-26 15:32:56 | 只看該作者
Language-Guided Sampling-based Planning using Temporal Relaxation,guage-guided biasing scheme. We leverage the notion of temporal relaxation of time-window temporal logic formulae (TWTL) to reformulate the temporal logic synthesis problem into an optimization problem. Our algorithm exhibits an exploration-exploitation structure, but retains probabilistic completen
30#
發(fā)表于 2025-3-26 20:40:47 | 只看該作者
Generating Plans that Predict Themselves,ammates’ actions early on can give us a clear idea of what the remainder of their plan is, i.e. what action sequence we should expect. In others, they might leave us less confident, or even lead us to the wrong conclusion. Our goal is for robot actions to fall in the first category: we want to enabl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贡山| 南昌市| 新丰县| 雅江县| 东安县| 竹北市| 怀化市| 庆云县| 盐城市| 昔阳县| 澄城县| 涪陵区| 广丰县| 平邑县| 高安市| 南陵县| 庄河市| 多伦县| 桑日县| 赣州市| 滦南县| 蒙自县| 无棣县| 旬邑县| 高阳县| 筠连县| 长兴县| 印江| 满城县| 理塘县| 桓仁| 济阳县| 佛坪县| 垣曲县| 韶关市| 新龙县| 佛坪县| 唐山市| 郑州市| 五莲县| 什邡市|