找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Decision Theory; Second International Ronen I. Brafman,Fred S. Roberts,Alexis Tsoukiàs Conference proceedings 2011 Springer-Ver

[復(fù)制鏈接]
樓主: EXERT
11#
發(fā)表于 2025-3-23 13:20:42 | 只看該作者
12#
發(fā)表于 2025-3-23 16:48:29 | 只看該作者
Dependable Computing – EDCC 2022 Workshopspdate these values so that this semantics of the value of variables is maintained. An empirical evaluation of our planner, comparing it to the best current CPP solver, Probabilistic-FF, shows that it is a promising approach.
13#
發(fā)表于 2025-3-23 18:54:58 | 只看該作者
https://doi.org/10.1007/3-540-48254-7to solve it exactly. We then compare against a Stochastic Constraint Programming (SCP) approach which applies randomized local search. While the BnB guarantees optimality, it can only solve smaller instances in a reasonable time and the SCP approach outperforms it for larger instances.
14#
發(fā)表于 2025-3-23 22:24:14 | 只看該作者
Irina Alam,Lara Dolecek,Puneet Guptandent and that the Bellman principle does not hold for OWR-optimal policies, we propose a linear programming reformulation of the problem. We also provide experimental results showing the efficiency of our approach.
15#
發(fā)表于 2025-3-24 04:49:06 | 只看該作者
Adrian Evans,Said Hamdioui,Ben Kaczerets of data, is also addressed. If the input data in the optimal aggregation problem are measured on a ratio scale and if the aggregation must be unanimous and symmetric, the arithmetic mean is the only sensible aggregation method.
16#
發(fā)表于 2025-3-24 08:40:26 | 只看該作者
A Translation Based Approach to Probabilistic Conformant Planning,pdate these values so that this semantics of the value of variables is maintained. An empirical evaluation of our planner, comparing it to the best current CPP solver, Probabilistic-FF, shows that it is a promising approach.
17#
發(fā)表于 2025-3-24 13:21:26 | 只看該作者
Risk-Averse Production Planning,to solve it exactly. We then compare against a Stochastic Constraint Programming (SCP) approach which applies randomized local search. While the BnB guarantees optimality, it can only solve smaller instances in a reasonable time and the SCP approach outperforms it for larger instances.
18#
發(fā)表于 2025-3-24 15:37:46 | 只看該作者
On Minimizing Ordered Weighted Regrets in Multiobjective Markov Decision Processes,ndent and that the Bellman principle does not hold for OWR-optimal policies, we propose a linear programming reformulation of the problem. We also provide experimental results showing the efficiency of our approach.
19#
發(fā)表于 2025-3-24 21:24:31 | 只看該作者
20#
發(fā)表于 2025-3-25 01:37:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 12:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扶沟县| 淮南市| 日土县| 新竹市| 全南县| 泰兴市| 云浮市| 成安县| 宜昌市| 武鸣县| 宁南县| 安康市| 瑞昌市| 蒙阴县| 忻州市| 济阳县| 洪雅县| 威远县| 谷城县| 梅河口市| 东方市| 南阳市| 洞头县| 丁青县| 临湘市| 保亭| 红原县| 杨浦区| 贵德县| 潮安县| 饶阳县| 新田县| 波密县| 龙南县| 大同市| 绥阳县| 阳原县| 葵青区| 凤凰县| 潮州市| 新蔡县|