找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Aspects in Information and Management; 10th International C Qianping Gu,Pavol Hell,Boting Yang Conference proceedings 2014 Spri

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 04:29:21 | 只看該作者
22#
發(fā)表于 2025-3-25 09:50:00 | 只看該作者
https://doi.org/10.1007/978-3-642-92004-2 nodes, a Steiner tree is a connected, acyclic subgraph that contains all the terminal nodes in .. The goal of . is to find as many element-disjoint Steiner trees as possible. . is known to be .-hard even for |.|?=?3 [1]. It is also known that . is .-hard to approximate within a factor of Ω(log|.|)
23#
發(fā)表于 2025-3-25 13:43:22 | 只看該作者
24#
發(fā)表于 2025-3-25 16:23:10 | 只看該作者
25#
發(fā)表于 2025-3-25 22:15:30 | 只看該作者
26#
發(fā)表于 2025-3-26 02:09:48 | 只看該作者
https://doi.org/10.1007/978-3-642-92004-2sitive edge lengths, uniform edge capacity, and positive vertex supplies. Here, each vertex supply corresponds to a set of evacuees. Then, the problem requires to find the optimal location of . sinks in a given path so that each evacuee is sent to one of . sinks. Let . denote a .-sink location. Unde
27#
發(fā)表于 2025-3-26 05:10:00 | 只看該作者
Bazillentr?ger und Dauerausscheiderset of a graph’s vertex set can be extended to a .-colouring of the whole graph. A .-list assignment of a graph is an allocation of a list — a subset of {1,…,.} — to each vertex, and the ... problem asks whether the graph has a .-colouring in which each vertex is coloured with a colour from its list
28#
發(fā)表于 2025-3-26 09:40:47 | 只看該作者
29#
發(fā)表于 2025-3-26 13:36:13 | 只看該作者
30#
發(fā)表于 2025-3-26 18:17:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 02:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广德县| 永仁县| 永新县| 呼图壁县| 黄浦区| 准格尔旗| 鄂托克旗| 泉州市| 遂宁市| 宜兰县| 旌德县| 武鸣县| 乡城县| 平安县| 山丹县| 广南县| 绥江县| 蒙自县| 延津县| 临清市| 克山县| 财经| 文昌市| 上蔡县| 普兰店市| 临夏县| 秭归县| 区。| 玉山县| 镇巴县| 始兴县| 宜都市| 肥城市| 大厂| 新田县| 介休市| 长子县| 社旗县| 金堂县| 海阳市| 湘乡市|