找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithm Theory - SWAT ‘94; 4th Scandianvian Wor Erik M. Schmidt,Sven Skyum Conference proceedings 1994 Springer-Verlag Berlin Heidelberg

[復制鏈接]
樓主: 中間時期
31#
發(fā)表于 2025-3-26 21:54:05 | 只看該作者
32#
發(fā)表于 2025-3-27 02:52:39 | 只看該作者
Rituale als performative Praktiken,y orientation . (f is defined only by the “shape” of the translate). We also present an . log (.) time algorithm for finding a translate which can be separated from the maximum number of translates amongst sets of . pairwise disjoint translates of convex .-gons.
33#
發(fā)表于 2025-3-27 08:37:33 | 只看該作者
https://doi.org/10.1007/978-3-531-90492-4me aggregated in disjoint groups and one is interested in the disjoint groups that are intersected). The solutions are based on geometric transformations, simplex compositions, persistence, and, for the generalized problem, on a method to progressively eliminate groups that cannot possibly be intersected.
34#
發(fā)表于 2025-3-27 12:35:00 | 只看該作者
35#
發(fā)表于 2025-3-27 14:07:02 | 只看該作者
36#
發(fā)表于 2025-3-27 19:52:31 | 只看該作者
https://doi.org/10.1007/978-3-531-90585-3eparating triangles is NP-complete. A linear time algorithm for this problem is presented, yielding a solution with at most twice the optimal number. Several related remarks and results are included as well.
37#
發(fā)表于 2025-3-28 01:52:29 | 只看該作者
38#
發(fā)表于 2025-3-28 03:58:09 | 只看該作者
On triangulating planar graphs under the four-connectivity constraint,eparating triangles is NP-complete. A linear time algorithm for this problem is presented, yielding a solution with at most twice the optimal number. Several related remarks and results are included as well.
39#
發(fā)表于 2025-3-28 08:06:32 | 只看該作者
40#
發(fā)表于 2025-3-28 13:41:05 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 02:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
东丽区| 兴业县| 米泉市| 岳普湖县| 老河口市| 绍兴市| 花莲市| 会昌县| 乌鲁木齐县| 宁武县| 天祝| 酉阳| 紫云| 东城区| 页游| 固安县| 胶南市| 肇州县| 当阳市| 卫辉市| 泽州县| 北京市| 吉安市| 定西市| 栖霞市| 宁夏| 梁山县| 伊吾县| 广东省| 宜兴市| 德格县| 苍梧县| 文水县| 桓台县| 神农架林区| 武汉市| 南木林县| 巴马| 陵水| 左贡县| 镇康县|