找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebras, Quivers and Representations; The Abel Symposium 2 Aslak Bakke Buan,Idun Reiten,?yvind Solberg Book 2013 Springer-Verlag Berlin He

[復制鏈接]
樓主: Flange
31#
發(fā)表于 2025-3-26 21:28:26 | 只看該作者
Democratic Culture and Moral Characteromorphisms between indecomposable finite dimensional modules are finite (do not belong to the infinite Jacobson radical of the module category). Moreover, geometric and homological properties of these module categories are exhibited.
32#
發(fā)表于 2025-3-27 05:08:00 | 只看該作者
https://doi.org/10.1007/978-3-642-39485-0cluster algebras; homological algebra; quivers; representation theory; triangulated categories
33#
發(fā)表于 2025-3-27 08:49:52 | 只看該作者
978-3-642-43018-3Springer-Verlag Berlin Heidelberg 2013
34#
發(fā)表于 2025-3-27 13:30:59 | 只看該作者
2193-2808 n, it includes contributions on further developments in representation theory of quivers and algebras..Algebras, Quivers and Representations. is targeted at researchers and graduate students in algebra, representation theory and triangulate categories..?978-3-642-43018-3978-3-642-39485-0Series ISSN 2193-2808 Series E-ISSN 2197-8549
35#
發(fā)表于 2025-3-27 14:36:28 | 只看該作者
36#
發(fā)表于 2025-3-27 20:30:41 | 只看該作者
37#
發(fā)表于 2025-3-27 22:44:04 | 只看該作者
Combinatorics of KP Solitons from the Real Grassmannian,er highlights include: a surprising connection with total positivity and cluster algebras; results on the .; and the characterization of regular soliton solutions—that is, a soliton solution ..(.,.,.) is regular for all times . if and only if . comes from the . of the Grassmannian.
38#
發(fā)表于 2025-3-28 03:55:46 | 只看該作者
39#
發(fā)表于 2025-3-28 06:42:56 | 只看該作者
Acyclic Cluster Algebras Revisited, simple proof of the known result that the .-vectors of an acyclic cluster algebra are sign-coherent, from which Nakanishi and Zelevinsky have showed that it is possible to deduce in an elementary way several important facts about cluster algebras.
40#
發(fā)表于 2025-3-28 11:34:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 13:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
思南县| 安化县| 华安县| 景泰县| 长葛市| 泸西县| 和平县| 丽水市| 布尔津县| 固安县| 青岛市| 定边县| 孙吴县| 南开区| 六盘水市| 老河口市| 萝北县| 白玉县| 呼伦贝尔市| 灵石县| 长白| 新绛县| 广德县| 温宿县| 泗洪县| 梅州市| 隆安县| 清涧县| 晋州市| 同仁县| 青浦区| 吉木萨尔县| 呼玛县| 凤庆县| 大城县| 光泽县| 宜丰县| 陕西省| 墨脱县| 收藏| 靖边县|