找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic-Geometric Codes; M. A. Tsfasman,S. G. Vl?du? Book 1991 Kluwer Academic Publishers and Copyright Holders 1991 algebraic curve.ana

[復(fù)制鏈接]
樓主: encroach
41#
發(fā)表于 2025-3-28 16:32:48 | 只看該作者
Algebraic Curvese but the algebraic approach is also considered; over ? we use also analysis and topology. We do not consider arithmetical questions in this chapter; the ground field . is assumed here to be algebraically closed.
42#
發(fā)表于 2025-3-28 20:11:26 | 只看該作者
Riemann-Roch Theorem.) plays an essential role in the theory of curves. Such an expression is given by the Riemann-Roch theorem which is the crucial result of the theory. To state it one should study differential forms on curves which are also useful in many other questions.
43#
發(fā)表于 2025-3-28 23:01:15 | 只看該作者
44#
發(fā)表于 2025-3-29 05:35:21 | 只看該作者
Singular Curves since many smooth curves have singular models which are useful to prove some of their properties. For example, any curve has a plane (singular) model. In this chapter we discuss some properties of singular curves and describe their connections with smooth curves.
45#
發(fā)表于 2025-3-29 07:20:57 | 只看該作者
Reductions and Schemesalgebraic varieties. By specialization one can obtain for example varieties over finite fields from varieties over algebraic number fields. The study of specialization using the language of quasi-projective varieties has many disadvantages. For these questions the language of schemes which is now th
46#
發(fā)表于 2025-3-29 14:58:32 | 只看該作者
47#
發(fā)表于 2025-3-29 18:15:56 | 只看該作者
48#
發(fā)表于 2025-3-29 22:48:18 | 只看該作者
10樓
49#
發(fā)表于 2025-3-30 00:08:56 | 只看該作者
10樓
50#
發(fā)表于 2025-3-30 05:23:17 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 04:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山西省| 通山县| 泽库县| 兴城市| 浦城县| 边坝县| 新竹市| 乐都县| 屯门区| 苍梧县| 兴安县| 睢宁县| 新田县| 平南县| 灵丘县| 陆川县| 永善县| 长乐市| 赞皇县| 施甸县| 洱源县| 普兰店市| 菏泽市| 大化| 郓城县| 安化县| 思茅市| 山阳县| 响水县| 雅江县| 沧州市| 旅游| 赤壁市| 岫岩| 云梦县| 泰和县| 鄂州市| 彰化县| 仪征市| 临泉县| 赤壁市|