找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic-Geometric Codes; M. A. Tsfasman,S. G. Vl?du? Book 1991 Kluwer Academic Publishers and Copyright Holders 1991 algebraic curve.ana

[復(fù)制鏈接]
樓主: encroach
41#
發(fā)表于 2025-3-28 16:32:48 | 只看該作者
Algebraic Curvese but the algebraic approach is also considered; over ? we use also analysis and topology. We do not consider arithmetical questions in this chapter; the ground field . is assumed here to be algebraically closed.
42#
發(fā)表于 2025-3-28 20:11:26 | 只看該作者
Riemann-Roch Theorem.) plays an essential role in the theory of curves. Such an expression is given by the Riemann-Roch theorem which is the crucial result of the theory. To state it one should study differential forms on curves which are also useful in many other questions.
43#
發(fā)表于 2025-3-28 23:01:15 | 只看該作者
44#
發(fā)表于 2025-3-29 05:35:21 | 只看該作者
Singular Curves since many smooth curves have singular models which are useful to prove some of their properties. For example, any curve has a plane (singular) model. In this chapter we discuss some properties of singular curves and describe their connections with smooth curves.
45#
發(fā)表于 2025-3-29 07:20:57 | 只看該作者
Reductions and Schemesalgebraic varieties. By specialization one can obtain for example varieties over finite fields from varieties over algebraic number fields. The study of specialization using the language of quasi-projective varieties has many disadvantages. For these questions the language of schemes which is now th
46#
發(fā)表于 2025-3-29 14:58:32 | 只看該作者
47#
發(fā)表于 2025-3-29 18:15:56 | 只看該作者
48#
發(fā)表于 2025-3-29 22:48:18 | 只看該作者
10樓
49#
發(fā)表于 2025-3-30 00:08:56 | 只看該作者
10樓
50#
發(fā)表于 2025-3-30 05:23:17 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 06:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和田市| 新干县| 武冈市| 漾濞| 太谷县| 阿拉尔市| 婺源县| 那坡县| 若羌县| 天镇县| 吉水县| 灯塔市| 印江| 西盟| 绍兴县| 宿迁市| 沧州市| 天祝| 温宿县| 长泰县| 乌海市| 台北市| 云安县| 肥东县| 乌苏市| 东方市| 临汾市| 罗江县| 临颍县| 临城县| 万安县| 利辛县| 双桥区| 台湾省| 革吉县| 宝坻区| 九台市| 安泽县| 五寨县| 五常市| 怀宁县|