找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic and Proof-theoretic Aspects of Non-classical Logics; Papers in Honor of D Stefano Aguzzoli,Agata Ciabattoni,Vincenzo Marra Book 2

[復制鏈接]
樓主: 加冕
41#
發(fā)表于 2025-3-28 15:40:28 | 只看該作者
Korsakow-Syndrom (anamnestisches Syndrom),istent logics is da Costa’s approach, which seeks to allow the use of classical logic whenever it is safe to do so, but behaves completely differently when contradictions are involved. da Costa’s approach has led to the family of Logics of Formal (In)consistency (LFIs). In this paper we provide non-
42#
發(fā)表于 2025-3-28 20:42:14 | 只看該作者
43#
發(fā)表于 2025-3-29 00:41:24 | 只看該作者
https://doi.org/10.1007/978-3-658-12469-4sarily have a complete semantics in the real interval [0,1]. However, such extensions are always complete with respect to valuations in a family of MV-chains. Rational ?ukasiewicz logic being the largest one that has a complete semantics in [0,1]. In addition, this logic does not admit expansions by
44#
發(fā)表于 2025-3-29 05:50:18 | 只看該作者
45#
發(fā)表于 2025-3-29 09:58:55 | 只看該作者
https://doi.org/10.1007/978-3-662-66389-9-complete MV-algebras and continuing with more general structures, including (pseudo) effect algebras and (pseudo) BCK-algebras. E.g., for .-complete MV-algebras a version of the Cantor–Bernstein theorem has been proved which assumes that the bounds of isomorphic intervals are boolean..There is anot
46#
發(fā)表于 2025-3-29 11:28:14 | 只看該作者
47#
發(fā)表于 2025-3-29 19:36:06 | 只看該作者
48#
發(fā)表于 2025-3-29 19:56:30 | 只看該作者
49#
發(fā)表于 2025-3-30 01:22:19 | 只看該作者
Recht auf ?chronische“ Heim?rztinnenariant under rule permutations. It is shown (via cut-elimination) that the profile is even invariant under a large class of proof transformations (called “simple transformations”), which includes transformations to negation normal form. As proofs having the same profile show the same behavior w.r.t.
50#
發(fā)表于 2025-3-30 05:08:34 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
临潭县| 沙洋县| 绥阳县| 余姚市| 瑞金市| 志丹县| 井研县| 突泉县| 阳江市| 江口县| 泾川县| 轮台县| 禹城市| 宣恩县| 敖汉旗| 喀喇沁旗| 肇东市| 凌云县| 独山县| 武胜县| 儋州市| 青阳县| 永年县| 潼关县| 郸城县| 治县。| 叶城县| 松滋市| 平安县| 泸定县| 东辽县| 松原市| 新宁县| 万山特区| 壶关县| 上思县| 临潭县| 隆林| 章丘市| 晋宁县| 祥云县|