找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic and Proof-theoretic Aspects of Non-classical Logics; Papers in Honor of D Stefano Aguzzoli,Agata Ciabattoni,Vincenzo Marra Book 2

[復制鏈接]
樓主: 加冕
41#
發(fā)表于 2025-3-28 15:40:28 | 只看該作者
Korsakow-Syndrom (anamnestisches Syndrom),istent logics is da Costa’s approach, which seeks to allow the use of classical logic whenever it is safe to do so, but behaves completely differently when contradictions are involved. da Costa’s approach has led to the family of Logics of Formal (In)consistency (LFIs). In this paper we provide non-
42#
發(fā)表于 2025-3-28 20:42:14 | 只看該作者
43#
發(fā)表于 2025-3-29 00:41:24 | 只看該作者
https://doi.org/10.1007/978-3-658-12469-4sarily have a complete semantics in the real interval [0,1]. However, such extensions are always complete with respect to valuations in a family of MV-chains. Rational ?ukasiewicz logic being the largest one that has a complete semantics in [0,1]. In addition, this logic does not admit expansions by
44#
發(fā)表于 2025-3-29 05:50:18 | 只看該作者
45#
發(fā)表于 2025-3-29 09:58:55 | 只看該作者
https://doi.org/10.1007/978-3-662-66389-9-complete MV-algebras and continuing with more general structures, including (pseudo) effect algebras and (pseudo) BCK-algebras. E.g., for .-complete MV-algebras a version of the Cantor–Bernstein theorem has been proved which assumes that the bounds of isomorphic intervals are boolean..There is anot
46#
發(fā)表于 2025-3-29 11:28:14 | 只看該作者
47#
發(fā)表于 2025-3-29 19:36:06 | 只看該作者
48#
發(fā)表于 2025-3-29 19:56:30 | 只看該作者
49#
發(fā)表于 2025-3-30 01:22:19 | 只看該作者
Recht auf ?chronische“ Heim?rztinnenariant under rule permutations. It is shown (via cut-elimination) that the profile is even invariant under a large class of proof transformations (called “simple transformations”), which includes transformations to negation normal form. As proofs having the same profile show the same behavior w.r.t.
50#
發(fā)表于 2025-3-30 05:08:34 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
巩义市| 隆林| 普定县| 福鼎市| 宜宾市| 安泽县| 乌审旗| 怀宁县| 讷河市| 五大连池市| 闸北区| 屯留县| 拉萨市| 连城县| 乌鲁木齐市| 谷城县| 手游| 惠州市| 台中县| 辰溪县| 法库县| 甘泉县| 铁力市| 连南| 靖远县| 夏津县| 周至县| 额尔古纳市| 图木舒克市| 洛阳市| 五大连池市| 内乡县| 温宿县| 婺源县| 咸阳市| 昌平区| 马鞍山市| 门头沟区| 什邡市| 泾源县| 饶河县|