找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic and Logic Programming; 4th International Co Giorgio Levi,Mario Rodríguez-Artalejo Conference proceedings 1994 Springer-Verlag Ber

[復制鏈接]
樓主: CAP
51#
發(fā)表于 2025-3-30 09:12:01 | 只看該作者
0302-9743 the papers are organized into sections on theorem proving, narrowing, logic programming, term rewriting, and higher-order programming.978-3-540-58431-5978-3-540-48791-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
52#
發(fā)表于 2025-3-30 15:39:57 | 只看該作者
53#
發(fā)表于 2025-3-30 19:46:58 | 只看該作者
54#
發(fā)表于 2025-3-30 23:31:59 | 只看該作者
Sufficient completeness and parameterized proofs by induction,lete and the constructors are not free. The method has been implemented in the prover SPIKE. Based on computer experiments, the method appears to be more practical and efficient than inductive theorem proving in non-parameterized specifications. Moreover, SPIKE offers facilities to check and complete definitions.
55#
發(fā)表于 2025-3-31 03:20:04 | 只看該作者
56#
發(fā)表于 2025-3-31 09:04:12 | 只看該作者
https://doi.org/10.1007/978-1-4471-2377-4 to a given first-order specification is equivalent to the standard validity of the same formula in a suitably enriched specification. As a consequence any proof system for first-order logic can be used to prove the behavioural validity of first-order formulas.
57#
發(fā)表于 2025-3-31 11:50:19 | 只看該作者
https://doi.org/10.1007/978-3-319-75259-4 the solutions of this geometrical system corresponding to the solutions of the original algebraic problem. As a corollary, unification in planar ternary rings is finitary and constitutes a decidable class of problems for which a type conformal algorithm exists.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
沂南县| 琼海市| 县级市| 梨树县| 辰溪县| 汉川市| 垫江县| 张家界市| 乌拉特前旗| 屯昌县| 星子县| 绍兴县| 榆树市| 晋中市| 南岸区| 盐津县| 苍南县| 吉隆县| 江阴市| 蒙阴县| 郑州市| 永福县| 喀喇沁旗| 长白| 仙居县| 株洲市| 潼南县| 体育| 乌审旗| 横山县| 阿巴嘎旗| 西吉县| 高雄县| 定日县| 亚东县| 六安市| 蚌埠市| 康乐县| 新宾| 惠来县| 鹤山市|