找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic and Logic Programming; 4th International Co Giorgio Levi,Mario Rodríguez-Artalejo Conference proceedings 1994 Springer-Verlag Ber

[復(fù)制鏈接]
樓主: CAP
51#
發(fā)表于 2025-3-30 09:12:01 | 只看該作者
0302-9743 the papers are organized into sections on theorem proving, narrowing, logic programming, term rewriting, and higher-order programming.978-3-540-58431-5978-3-540-48791-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
52#
發(fā)表于 2025-3-30 15:39:57 | 只看該作者
53#
發(fā)表于 2025-3-30 19:46:58 | 只看該作者
54#
發(fā)表于 2025-3-30 23:31:59 | 只看該作者
Sufficient completeness and parameterized proofs by induction,lete and the constructors are not free. The method has been implemented in the prover SPIKE. Based on computer experiments, the method appears to be more practical and efficient than inductive theorem proving in non-parameterized specifications. Moreover, SPIKE offers facilities to check and complete definitions.
55#
發(fā)表于 2025-3-31 03:20:04 | 只看該作者
56#
發(fā)表于 2025-3-31 09:04:12 | 只看該作者
https://doi.org/10.1007/978-1-4471-2377-4 to a given first-order specification is equivalent to the standard validity of the same formula in a suitably enriched specification. As a consequence any proof system for first-order logic can be used to prove the behavioural validity of first-order formulas.
57#
發(fā)表于 2025-3-31 11:50:19 | 只看該作者
https://doi.org/10.1007/978-3-319-75259-4 the solutions of this geometrical system corresponding to the solutions of the original algebraic problem. As a corollary, unification in planar ternary rings is finitary and constitutes a decidable class of problems for which a type conformal algorithm exists.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 06:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
突泉县| 丹寨县| 浑源县| 汶川县| 定日县| 密山市| 二连浩特市| 嘉荫县| 天峨县| 普洱| 丰都县| 永济市| 进贤县| 鹤壁市| 乐昌市| 甘肃省| 牟定县| 布拖县| 文昌市| 宣城市| 砀山县| 子洲县| 贵阳市| 永安市| 汉阴县| 海宁市| 盐津县| 天门市| 尚义县| 八宿县| 九龙城区| 云梦县| 武邑县| 乐安县| 瑞金市| 鹤壁市| 南乐县| 镇江市| 汾阳市| 司法| 玉门市|