找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic and Geometric Methods in Mathematical Physics; Proceedings of the K Anne Boutet Monvel,Vladimir Marchenko Conference proceedings

[復(fù)制鏈接]
樓主: 調(diào)戲
41#
發(fā)表于 2025-3-28 15:44:17 | 只看該作者
42#
發(fā)表于 2025-3-28 22:33:56 | 只看該作者
43#
發(fā)表于 2025-3-29 02:26:45 | 只看該作者
44#
發(fā)表于 2025-3-29 06:44:38 | 只看該作者
45#
發(fā)表于 2025-3-29 10:04:53 | 只看該作者
46#
發(fā)表于 2025-3-29 14:11:41 | 只看該作者
47#
發(fā)表于 2025-3-29 16:44:17 | 只看該作者
On Approximation of General Hamiltonians by Hamiltonians of the Theories of Superconductivity and Susystems if we replace the Kronecker symbol, which expresses the law of conservation of momentum, by several Kronecker symbols, preserving only the terms that contain at least two operators with momenta zero in the interaction Hamiltonian. This list of model systems can be continued.
48#
發(fā)表于 2025-3-29 23:24:19 | 只看該作者
49#
發(fā)表于 2025-3-30 01:32:09 | 只看該作者
Index Theorems and Microsupportuch as the index theorem for Toeplitz operators or the relative index theorem for .-modules proved by B. Malgrange and the author. We make a special emphasis on the microlocal contribution produced by the sheaf in which the solutions of the differential equations are computed, as described by P.Scha
50#
發(fā)表于 2025-3-30 08:05:10 | 只看該作者
Oscillatory Integrals Controlling the Drift of Spectral Projections for Pseudo-Differential Operator that rather explicit formulas for the drift can be found, in such a way that oscillatory integrals involving the symbols will control the variation of the spectral projections. Let’s start now to describe the main features of our approach through a model situation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
礼泉县| 翁源县| 呼玛县| 栖霞市| 涟水县| 咸阳市| 浠水县| 辽源市| 广州市| 黎城县| 出国| 安塞县| 盐池县| 柳林县| 洪湖市| 兰坪| 邻水| 通山县| 揭阳市| 西藏| 民勤县| 中阳县| 南江县| 满城县| 丹寨县| 道孚县| 周口市| 抚远县| 宿州市| 鹤岗市| 吉木萨尔县| 远安县| 桃源县| 阳泉市| 涟源市| 象州县| 建德市| 增城市| 灵丘县| 康保县| 梓潼县|