找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Algebraic and Complex Geometry; In Honour of Klaus H Anne Frühbis-Krüger,Remke Nanne Kloosterman,Matthi Conference proceedings 2014 Springe

[復(fù)制鏈接]
樓主: 滲漏
41#
發(fā)表于 2025-3-28 15:31:29 | 只看該作者
42#
發(fā)表于 2025-3-28 21:59:54 | 只看該作者
Gonality of Algebraic Curves and Graphs,ponding graph is .-gonal and of Hurwitz type. Conversely the dual graph of a .-gonal stable curve is equivalent to a .-gonal graph of Hurwitz type. The hyperelliptic case is studied in detail. For .?≥?1, we show that the dual graph of a (.,?.)-gonal stable is the underlying graph of a tropical curve
43#
發(fā)表于 2025-3-28 23:30:03 | 只看該作者
Caustics of Plane Curves, Their Birationality and Matrix Projections,rce point . in the plane. Then we prove more generally a theorem for curves . in the projective space of 3 × 3 symmetric matrices .. For a general 3 × 1 vector . the projection to the plane given by .?→?. is birational on ., unless . is not a line and . is contained in a plane of the form ..
44#
發(fā)表于 2025-3-29 03:46:57 | 只看該作者
45#
發(fā)表于 2025-3-29 08:51:53 | 只看該作者
Hodge Numbers for the Cohomology of Calabi-Yau Type Local Systems,lds over a smooth, quasi-projective curve .. This generalizes previous work to the case of quasi-unipotent, but not necessarily unipotent, local monodromies at infinity. We give applications to Rohde’s families of Calabi-Yau 3-folds.
46#
發(fā)表于 2025-3-29 13:36:26 | 只看該作者
Lagrangian Fibrations of Holomorphic-Symplectic Varieties of ,3,-Type,e. Let . be a nef line-bundle on ., such that the top power . vanishes and . is primitive. Assume that the two dimensional subspace ..(.) ..(.) of . intersects . trivially. We prove that the linear system of . is base point free and it induces a Lagrangian fibration on .. In particular, the line-bun
47#
發(fā)表于 2025-3-29 17:53:25 | 只看該作者
48#
發(fā)表于 2025-3-29 19:44:45 | 只看該作者
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 02:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
寻乌县| 肥乡县| 长垣县| 合作市| 通城县| 固始县| 日喀则市| 公安县| 明水县| 衡阳市| 新晃| 原平市| 夏邑县| 泸西县| 邵东县| 广平县| 阿拉善左旗| 固安县| 永定县| 正定县| 大同县| 彭山县| 林甸县| 灵武市| 垫江县| 鹤庆县| 禄丰县| 波密县| 汤阴县| 筠连县| 广丰县| 宝兴县| 遂川县| 诸暨市| 汉中市| 南阳市| 双柏县| 富川| 天水市| 阿拉善左旗| 吉木萨尔县|