找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Topology: New Trends in Localization and Periodicity; Barcelona Conference Carles Broto,Carles Casacuberta,Guido Mislin Conferenc

[復(fù)制鏈接]
樓主: 削木頭
21#
發(fā)表于 2025-3-25 04:40:37 | 只看該作者
Algebraic Topology: New Trends in Localization and Periodicity978-3-0348-9018-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
22#
發(fā)表于 2025-3-25 10:38:03 | 只看該作者
23#
發(fā)表于 2025-3-25 14:13:06 | 只看該作者
24#
發(fā)表于 2025-3-25 16:02:21 | 只看該作者
https://doi.org/10.1007/978-3-030-58442-9 Wilson chararacterise this Hopf ring by a purely algebraic universal property, and also prove that the .-homology of each component of each even space is polynomial under the star product. The star-indecomposables in this Hopf ring form an algebra under the circle product.
25#
發(fā)表于 2025-3-25 22:12:16 | 只看該作者
26#
發(fā)表于 2025-3-26 00:17:03 | 只看該作者
https://doi.org/10.1007/978-3-0348-9018-2Algebraic topology; Homotopy; K-theory; cohomology; group theory; homology; homotopy theory; localization o
27#
發(fā)表于 2025-3-26 05:26:39 | 只看該作者
28#
發(fā)表于 2025-3-26 11:12:26 | 只看該作者
29#
發(fā)表于 2025-3-26 15:20:44 | 只看該作者
Estimates of Available Mine-Sites,We apply the homology theory with local coefficients to study closed even-dimensional manifolds with highly connected universal covering spaces. Then we obtain simple algebraic characterizations of aspherical manifolds and discuss some properties regarding the minimality of their Euler characteristics.
30#
發(fā)表于 2025-3-26 18:44:31 | 只看該作者
Delinquency Careers in Two Birth CohortsA nilmanifold, as defined by Malcev [Ma], is a compact manifold . which is the space of cosets of a simply connected Lie group by discrete uniform subgroup .. Thus the manifold . can be identified with the Eilenberg-MacLane space .(., 1), where . = π. (.) is a finitely generated torsion free nilpotent group.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
濮阳县| 昌平区| 同仁县| 集安市| 宁远县| 镇赉县| 杨浦区| 美姑县| 靖江市| 来凤县| 凌云县| 若羌县| 清原| 陈巴尔虎旗| 浮梁县| 揭阳市| 翁源县| 岳普湖县| 长白| 哈密市| 天镇县| 沙雅县| 绿春县| 峡江县| 三门县| 三河市| 龙里县| 静宁县| 扶风县| 贞丰县| 仁怀市| 龙泉市| 屏东县| 凌云县| 正定县| 华坪县| 满洲里市| 凉山| 永川市| 寿光市| 泽普县|