找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Topology: New Trends in Localization and Periodicity; Barcelona Conference Carles Broto,Carles Casacuberta,Guido Mislin Conferenc

[復(fù)制鏈接]
樓主: 削木頭
21#
發(fā)表于 2025-3-25 04:40:37 | 只看該作者
Algebraic Topology: New Trends in Localization and Periodicity978-3-0348-9018-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
22#
發(fā)表于 2025-3-25 10:38:03 | 只看該作者
23#
發(fā)表于 2025-3-25 14:13:06 | 只看該作者
24#
發(fā)表于 2025-3-25 16:02:21 | 只看該作者
https://doi.org/10.1007/978-3-030-58442-9 Wilson chararacterise this Hopf ring by a purely algebraic universal property, and also prove that the .-homology of each component of each even space is polynomial under the star product. The star-indecomposables in this Hopf ring form an algebra under the circle product.
25#
發(fā)表于 2025-3-25 22:12:16 | 只看該作者
26#
發(fā)表于 2025-3-26 00:17:03 | 只看該作者
https://doi.org/10.1007/978-3-0348-9018-2Algebraic topology; Homotopy; K-theory; cohomology; group theory; homology; homotopy theory; localization o
27#
發(fā)表于 2025-3-26 05:26:39 | 只看該作者
28#
發(fā)表于 2025-3-26 11:12:26 | 只看該作者
29#
發(fā)表于 2025-3-26 15:20:44 | 只看該作者
Estimates of Available Mine-Sites,We apply the homology theory with local coefficients to study closed even-dimensional manifolds with highly connected universal covering spaces. Then we obtain simple algebraic characterizations of aspherical manifolds and discuss some properties regarding the minimality of their Euler characteristics.
30#
發(fā)表于 2025-3-26 18:44:31 | 只看該作者
Delinquency Careers in Two Birth CohortsA nilmanifold, as defined by Malcev [Ma], is a compact manifold . which is the space of cosets of a simply connected Lie group by discrete uniform subgroup .. Thus the manifold . can be identified with the Eilenberg-MacLane space .(., 1), where . = π. (.) is a finitely generated torsion free nilpotent group.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伊通| 北辰区| 武平县| 盐源县| 锡林郭勒盟| 陈巴尔虎旗| 澄城县| 牟定县| 清远市| 昭觉县| 于都县| 十堰市| 湖州市| 曲靖市| 鹿泉市| 杂多县| 依安县| 宽城| 遂溪县| 利津县| 耒阳市| 宝山区| 濮阳市| 苏州市| 阿瓦提县| 台中县| 慈利县| 浑源县| 丹棱县| 濮阳市| 雅安市| 建昌县| 德阳市| 锡林郭勒盟| 阿勒泰市| 红河县| 商河县| 互助| 招远市| 沂南县| 南开区|