找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Topology: New Trends in Localization and Periodicity; Barcelona Conference Carles Broto,Carles Casacuberta,Guido Mislin Conferenc

[復(fù)制鏈接]
樓主: 削木頭
21#
發(fā)表于 2025-3-25 04:40:37 | 只看該作者
Algebraic Topology: New Trends in Localization and Periodicity978-3-0348-9018-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
22#
發(fā)表于 2025-3-25 10:38:03 | 只看該作者
23#
發(fā)表于 2025-3-25 14:13:06 | 只看該作者
24#
發(fā)表于 2025-3-25 16:02:21 | 只看該作者
https://doi.org/10.1007/978-3-030-58442-9 Wilson chararacterise this Hopf ring by a purely algebraic universal property, and also prove that the .-homology of each component of each even space is polynomial under the star product. The star-indecomposables in this Hopf ring form an algebra under the circle product.
25#
發(fā)表于 2025-3-25 22:12:16 | 只看該作者
26#
發(fā)表于 2025-3-26 00:17:03 | 只看該作者
https://doi.org/10.1007/978-3-0348-9018-2Algebraic topology; Homotopy; K-theory; cohomology; group theory; homology; homotopy theory; localization o
27#
發(fā)表于 2025-3-26 05:26:39 | 只看該作者
28#
發(fā)表于 2025-3-26 11:12:26 | 只看該作者
29#
發(fā)表于 2025-3-26 15:20:44 | 只看該作者
Estimates of Available Mine-Sites,We apply the homology theory with local coefficients to study closed even-dimensional manifolds with highly connected universal covering spaces. Then we obtain simple algebraic characterizations of aspherical manifolds and discuss some properties regarding the minimality of their Euler characteristics.
30#
發(fā)表于 2025-3-26 18:44:31 | 只看該作者
Delinquency Careers in Two Birth CohortsA nilmanifold, as defined by Malcev [Ma], is a compact manifold . which is the space of cosets of a simply connected Lie group by discrete uniform subgroup .. Thus the manifold . can be identified with the Eilenberg-MacLane space .(., 1), where . = π. (.) is a finitely generated torsion free nilpotent group.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 18:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
多伦县| 湘潭市| 凌源市| 渝北区| 区。| 北票市| 嘉义市| 禄丰县| 拉孜县| 遵义市| 班戈县| 双桥区| 滨海县| 揭西县| 濉溪县| 松江区| 永胜县| 新丰县| 平度市| 鸡西市| 沧州市| 同德县| 祁阳县| 宁波市| 西青区| 富顺县| 眉山市| 左权县| 惠水县| 乐清市| 永州市| 威远县| 高陵县| 柞水县| 太和县| 成都市| 石渠县| 武清区| 中超| 穆棱市| 贺州市|