找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Topology and Related Topics; Mahender Singh,Yongjin Song,Jie Wu Conference proceedings 2019 Springer Nature Singapore Pte Ltd. 2

[復制鏈接]
樓主: 貶損
31#
發(fā)表于 2025-3-26 22:11:29 | 只看該作者
Arc Shift Number for Some Virtual Knots,In this paper, we compute the arc shift number for some classes of virtual knots and show that for every positive integer ., there exist infinitely many virtual knots with arc shift number .. We conclude the paper by computing the arc shift number for an infinite family of virtual knots with virtual bridge index one.
32#
發(fā)表于 2025-3-27 04:04:15 | 只看該作者
-Groups of Stunted Complex and Quaternionic Projective Spaces,In this note, we compute .-groups of the stunted projective space ., where . or .. We also prove some non-sectioning results of certain maps of stunted complex projective spaces into certain quotients.
33#
發(fā)表于 2025-3-27 06:23:46 | 只看該作者
34#
發(fā)表于 2025-3-27 11:55:31 | 只看該作者
Springer Nature Singapore Pte Ltd. 2019
35#
發(fā)表于 2025-3-27 14:39:13 | 只看該作者
36#
發(fā)表于 2025-3-27 20:36:22 | 只看該作者
37#
發(fā)表于 2025-3-28 00:19:48 | 只看該作者
https://doi.org/10.1007/978-981-15-2140-9Borsuk–Ulam theorem is used to show that, if ., then the covering dimension of the space of vectors . such that . is at least .. It is shown, further, that there exists such a map . for which this zero-set has covering dimension equal to ..
38#
發(fā)表于 2025-3-28 05:51:44 | 只看該作者
39#
發(fā)表于 2025-3-28 09:00:00 | 只看該作者
https://doi.org/10.1007/978-981-15-2140-9h the .-primary homotopy exponents of spheres . and ., respectively. We further study the exponent problem when . is a space with the homotopy type of . for a homotopy .-sphere ., the complex projective space . for . or the quaternionic projective space . for ..
40#
發(fā)表于 2025-3-28 14:07:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
沁源县| 嘉祥县| 枣庄市| 遵义市| 皮山县| 河源市| 花垣县| 高密市| 泰和县| 晋中市| 多伦县| 新乐市| 灵石县| 中宁县| 鸡泽县| 平谷区| 绥阳县| 桐乡市| 永靖县| 延安市| 当涂县| 澜沧| 合江县| 清远市| 崇仁县| 靖州| 象州县| 饶阳县| 顺昌县| 江津市| 大化| 历史| 娄烦县| 新巴尔虎左旗| 岳阳市| 贺兰县| 吉水县| 阜新市| 辽阳县| 科技| 蒙自县|