找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Topology; A Primer Satya Deo Book 2003 Hindustan Book Agency 2003

[復(fù)制鏈接]
樓主: Constrict
11#
發(fā)表于 2025-3-23 12:52:31 | 只看該作者
12#
發(fā)表于 2025-3-23 14:13:06 | 只看該作者
Das Wissen, die Macht und das Spiele simplicial complex ., will have interesting functorial properties, viz., for each simplicial map . : . → ., there will be an induced group homomorphism (.). : .(.) → .(.) for each . ≥ 0 satisfying the following two properties:
13#
發(fā)表于 2025-3-23 21:32:06 | 只看該作者
The Fundamental Group,ed spaces. Let . : . → . be a homeomorphism and . be a point of .. Then . is a homeomorphism between pointed spaces (., .) and (., .(.)). The composite of two maps between pointed spaces is again a map between pointed spaces and the identity map . : (., .) → (., .) is always a homeomorphism of pointed spaces for each . ∈ ..
14#
發(fā)表于 2025-3-24 01:21:56 | 只看該作者
Simplicial Homology,e simplicial complex ., will have interesting functorial properties, viz., for each simplicial map . : . → ., there will be an induced group homomorphism (.). : .(.) → .(.) for each . ≥ 0 satisfying the following two properties:
15#
發(fā)表于 2025-3-24 02:47:12 | 只看該作者
… und was hei?t das für die Praxis?to prove the topological invariance of simplicial homology in Chapter 4. This was first done by J.W. Alexander (1888–1971). In a contrast to this, we will see in this chapter that the topological invariance of singular homology follows almost obviously - this is another attractive feature of singular homology.
16#
發(fā)表于 2025-3-24 06:55:18 | 只看該作者
17#
發(fā)表于 2025-3-24 11:21:06 | 只看該作者
18#
發(fā)表于 2025-3-24 18:10:11 | 只看該作者
Die Grenzen von Geschlecht überschreitenther things, we will see that the problem of “l(fā)ifting” a continuous map . : . → . to a continuous map ., where . is a covering projection, has a complete solution in terms of the fundamental groups of the spaces involved and the induced homomorphisms among them.
19#
發(fā)表于 2025-3-24 20:56:43 | 只看該作者
20#
發(fā)表于 2025-3-25 01:12:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 15:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
区。| 合作市| 昔阳县| 惠水县| 师宗县| 石家庄市| 合江县| 融水| 海林市| 泸定县| 永济市| 元朗区| 清原| 布尔津县| 绿春县| 楚雄市| 南陵县| 泊头市| 本溪市| 灵台县| 沁阳市| 上犹县| 手游| 萨嘎县| 佛山市| 清徐县| 云浮市| 怀安县| 吉木萨尔县| 塔河县| 宝兴县| 茌平县| 六枝特区| 永平县| 乳源| 天镇县| 关岭| 秀山| 富蕴县| 太仆寺旗| 阿拉善右旗|