找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Theory of Quadratic Numbers; Mak Trifkovi? Textbook 2013 Springer Science+Business Media New York 2013 ideal class group.number

[復(fù)制鏈接]
樓主: Thoracic
11#
發(fā)表于 2025-3-23 12:57:09 | 只看該作者
https://doi.org/10.1007/978-3-642-49270-9When we write . = 3. 141592., we really mean that . be approximated (the “…” part) by the rational number ..
12#
發(fā)表于 2025-3-23 17:38:19 | 只看該作者
https://doi.org/10.1007/978-1-4612-0885-3In this final chapter we go back to the late-eighteenth-century roots of algebraic number theory. Its fathers, Lagrange, Legendre, and Gauss, had none of the algebraic machinery we have used.
13#
發(fā)表于 2025-3-23 19:01:16 | 只看該作者
14#
發(fā)表于 2025-3-24 01:26:52 | 只看該作者
15#
發(fā)表于 2025-3-24 02:35:41 | 只看該作者
16#
發(fā)表于 2025-3-24 09:01:08 | 只看該作者
The Ideal Class Group and the Geometry of Numbers,It turns out that the group of fractional ideals . is not an interesting invariant of the quadratic field .: for different fields ., ., Exer. 5.1.7 shows that .. To get an object which does reflect the arithmetic of ., we consider a quotient of ..
17#
發(fā)表于 2025-3-24 11:29:17 | 只看該作者
Continued Fractions,When we write . = 3. 141592., we really mean that . be approximated (the “…” part) by the rational number ..
18#
發(fā)表于 2025-3-24 17:44:48 | 只看該作者
19#
發(fā)表于 2025-3-24 22:48:19 | 只看該作者
Algebraic Theory of Quadratic Numbers978-1-4614-7717-4Series ISSN 0172-5939 Series E-ISSN 2191-6675
20#
發(fā)表于 2025-3-25 00:08:32 | 只看該作者
Textbook 2013experience with elements and ideals in quadratic number fields.? The reader is also asked to fill in the details of proofs and develop extra topics, like the theory of orders.? Prerequisites include elementary number theory and a basic familiarity with ring theory..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 01:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宣恩县| 阿拉善盟| 云霄县| 铜陵市| 莱芜市| 贡嘎县| 馆陶县| 武义县| 工布江达县| 临汾市| 重庆市| 鹤庆县| 洪湖市| 庆云县| 苗栗市| 呈贡县| 新田县| 翁源县| 惠安县| 竹北市| 六安市| 白银市| 罗山县| 石渠县| 宜兰县| 唐山市| 望城县| 佛学| 全椒县| 天门市| 贡觉县| 花莲市| 靖州| 镇安县| 丰台区| 曲麻莱县| 中宁县| 永善县| 阳春市| 康平县| 绥化市|