找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Surfaces; Lucian B?descu Textbook 2001 Springer-Verlag New York 2001 Dimension.Divisor.Grad.Grothendieck topology.algebra.algebr

[復(fù)制鏈接]
樓主: 無限
21#
發(fā)表于 2025-3-25 03:48:48 | 只看該作者
Morphisms from a Surface to a Curve. Elliptic and Quasielliptic Fibrations,Let .: . → . be .*: k(.) → k(.) . k(.) . k(.). Then . V ? Y ..(.) ..
22#
發(fā)表于 2025-3-25 10:20:36 | 只看該作者
Canonical Dimension of an Elliptic or Quasielliptic Fibration,Let .: . → . be an elliptic or quasielliptic fibration. Theorem 7.15 expresses the dualizing sheaf ω. of . in the form
23#
發(fā)表于 2025-3-25 13:04:03 | 只看該作者
Ruled Surfaces. The Noether-Tsen Criterion,A surface . is a . if there exists a nonsingular projective curve . such that . is birationally isomorphic to P. × ..
24#
發(fā)表于 2025-3-25 16:41:11 | 只看該作者
25#
發(fā)表于 2025-3-25 20:21:27 | 只看該作者
Zariski Decomposition and Applications,In this chapter we present Zariski’s theory of finite generation of the graded algebra . (., .) associated to a divisor . on a surface ., cf. [Zar1] and some more recent developments related to this theory.
26#
發(fā)表于 2025-3-26 02:11:58 | 只看該作者
27#
發(fā)表于 2025-3-26 08:06:05 | 只看該作者
28#
發(fā)表于 2025-3-26 10:06:46 | 只看該作者
978-1-4419-3149-8Springer-Verlag New York 2001
29#
發(fā)表于 2025-3-26 16:26:52 | 只看該作者
Murray Gerstenhaber,Samuel D. Schack let .: . → . be its canonical projection. Let . ∈ . be a closed point on the fiber .. = ..(.), . = . (.), and let .be the quadratic transformation of . with center .. Then the proper transform F′ of .. on .has ..(F′) = 0 and (F′.) = ?1, because ..(Fb) = 0 and (F..) = 0. In other words, F′ is an exc
30#
發(fā)表于 2025-3-26 18:25:48 | 只看該作者
Minimal Models of Ruled Surfaces, let .: . → . be its canonical projection. Let . ∈ . be a closed point on the fiber .. = ..(.), . = . (.), and let .be the quadratic transformation of . with center .. Then the proper transform F′ of .. on .has ..(F′) = 0 and (F′.) = ?1, because ..(Fb) = 0 and (F..) = 0. In other words, F′ is an exc
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 05:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
成安县| 宁陵县| 蕲春县| 鹤岗市| 梓潼县| 宜宾市| 晋宁县| 台南县| 确山县| 灌云县| 镇原县| 郸城县| 阳谷县| 辛集市| 巴中市| 岳普湖县| 忻城县| 梧州市| 绿春县| 银川市| 新昌县| 江西省| 渭南市| 宁南县| 普洱| 遂昌县| 黄龙县| 隆化县| 汝城县| 富裕县| 安吉县| 买车| 阿拉善盟| 新密市| 交口县| 格尔木市| 射洪县| 洛宁县| 信丰县| 伊春市| 湖口县|