找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Surfaces; Lucian B?descu Textbook 2001 Springer-Verlag New York 2001 Dimension.Divisor.Grad.Grothendieck topology.algebra.algebr

[復(fù)制鏈接]
樓主: 無限
21#
發(fā)表于 2025-3-25 03:48:48 | 只看該作者
Morphisms from a Surface to a Curve. Elliptic and Quasielliptic Fibrations,Let .: . → . be .*: k(.) → k(.) . k(.) . k(.). Then . V ? Y ..(.) ..
22#
發(fā)表于 2025-3-25 10:20:36 | 只看該作者
Canonical Dimension of an Elliptic or Quasielliptic Fibration,Let .: . → . be an elliptic or quasielliptic fibration. Theorem 7.15 expresses the dualizing sheaf ω. of . in the form
23#
發(fā)表于 2025-3-25 13:04:03 | 只看該作者
Ruled Surfaces. The Noether-Tsen Criterion,A surface . is a . if there exists a nonsingular projective curve . such that . is birationally isomorphic to P. × ..
24#
發(fā)表于 2025-3-25 16:41:11 | 只看該作者
25#
發(fā)表于 2025-3-25 20:21:27 | 只看該作者
Zariski Decomposition and Applications,In this chapter we present Zariski’s theory of finite generation of the graded algebra . (., .) associated to a divisor . on a surface ., cf. [Zar1] and some more recent developments related to this theory.
26#
發(fā)表于 2025-3-26 02:11:58 | 只看該作者
27#
發(fā)表于 2025-3-26 08:06:05 | 只看該作者
28#
發(fā)表于 2025-3-26 10:06:46 | 只看該作者
978-1-4419-3149-8Springer-Verlag New York 2001
29#
發(fā)表于 2025-3-26 16:26:52 | 只看該作者
Murray Gerstenhaber,Samuel D. Schack let .: . → . be its canonical projection. Let . ∈ . be a closed point on the fiber .. = ..(.), . = . (.), and let .be the quadratic transformation of . with center .. Then the proper transform F′ of .. on .has ..(F′) = 0 and (F′.) = ?1, because ..(Fb) = 0 and (F..) = 0. In other words, F′ is an exc
30#
發(fā)表于 2025-3-26 18:25:48 | 只看該作者
Minimal Models of Ruled Surfaces, let .: . → . be its canonical projection. Let . ∈ . be a closed point on the fiber .. = ..(.), . = . (.), and let .be the quadratic transformation of . with center .. Then the proper transform F′ of .. on .has ..(F′) = 0 and (F′.) = ?1, because ..(Fb) = 0 and (F..) = 0. In other words, F′ is an exc
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 05:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蓬溪县| 周至县| 禹州市| 明星| 哈尔滨市| 濮阳市| 大足县| 临朐县| 邛崃市| 常德市| 叙永县| 长沙市| 鸡泽县| 家居| 汶上县| 云霄县| 宁城县| 米泉市| 巴林左旗| 建水县| 广安市| 东源县| 康定县| 伊春市| 哈巴河县| 汉阴县| 治县。| 五台县| 内江市| 河北省| 景德镇市| 邢台县| 嵊泗县| 金秀| 来安县| 西昌市| 泽库县| 武安市| 永吉县| 石狮市| 兖州市|