找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Surfaces; Lucian B?descu Textbook 2001 Springer-Verlag New York 2001 Dimension.Divisor.Grad.Grothendieck topology.algebra.algebr

[復制鏈接]
樓主: 無限
21#
發(fā)表于 2025-3-25 03:48:48 | 只看該作者
Morphisms from a Surface to a Curve. Elliptic and Quasielliptic Fibrations,Let .: . → . be .*: k(.) → k(.) . k(.) . k(.). Then . V ? Y ..(.) ..
22#
發(fā)表于 2025-3-25 10:20:36 | 只看該作者
Canonical Dimension of an Elliptic or Quasielliptic Fibration,Let .: . → . be an elliptic or quasielliptic fibration. Theorem 7.15 expresses the dualizing sheaf ω. of . in the form
23#
發(fā)表于 2025-3-25 13:04:03 | 只看該作者
Ruled Surfaces. The Noether-Tsen Criterion,A surface . is a . if there exists a nonsingular projective curve . such that . is birationally isomorphic to P. × ..
24#
發(fā)表于 2025-3-25 16:41:11 | 只看該作者
25#
發(fā)表于 2025-3-25 20:21:27 | 只看該作者
Zariski Decomposition and Applications,In this chapter we present Zariski’s theory of finite generation of the graded algebra . (., .) associated to a divisor . on a surface ., cf. [Zar1] and some more recent developments related to this theory.
26#
發(fā)表于 2025-3-26 02:11:58 | 只看該作者
27#
發(fā)表于 2025-3-26 08:06:05 | 只看該作者
28#
發(fā)表于 2025-3-26 10:06:46 | 只看該作者
978-1-4419-3149-8Springer-Verlag New York 2001
29#
發(fā)表于 2025-3-26 16:26:52 | 只看該作者
Murray Gerstenhaber,Samuel D. Schack let .: . → . be its canonical projection. Let . ∈ . be a closed point on the fiber .. = ..(.), . = . (.), and let .be the quadratic transformation of . with center .. Then the proper transform F′ of .. on .has ..(F′) = 0 and (F′.) = ?1, because ..(Fb) = 0 and (F..) = 0. In other words, F′ is an exc
30#
發(fā)表于 2025-3-26 18:25:48 | 只看該作者
Minimal Models of Ruled Surfaces, let .: . → . be its canonical projection. Let . ∈ . be a closed point on the fiber .. = ..(.), . = . (.), and let .be the quadratic transformation of . with center .. Then the proper transform F′ of .. on .has ..(F′) = 0 and (F′.) = ?1, because ..(Fb) = 0 and (F..) = 0. In other words, F′ is an exc
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 09:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
伊通| 泰安市| 普陀区| 南投市| 上高县| 荆州市| 西平县| 淄博市| 抚顺县| 张北县| 武强县| 广东省| 洞口县| 会昌县| 稷山县| 宝山区| 卢湾区| 杭锦后旗| 张家港市| 四平市| 阜平县| 前郭尔| 大竹县| 偏关县| 梅河口市| 湄潭县| 任丘市| 巴彦淖尔市| 常熟市| 怀来县| 虎林市| 福州市| 海阳市| 麻江县| 灵川县| 曲周县| 兰西县| 南漳县| 象州县| 武川县| 即墨市|