找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Surfaces; Lucian B?descu Textbook 2001 Springer-Verlag New York 2001 Dimension.Divisor.Grad.Grothendieck topology.algebra.algebr

[復制鏈接]
樓主: 無限
21#
發(fā)表于 2025-3-25 03:48:48 | 只看該作者
Morphisms from a Surface to a Curve. Elliptic and Quasielliptic Fibrations,Let .: . → . be .*: k(.) → k(.) . k(.) . k(.). Then . V ? Y ..(.) ..
22#
發(fā)表于 2025-3-25 10:20:36 | 只看該作者
Canonical Dimension of an Elliptic or Quasielliptic Fibration,Let .: . → . be an elliptic or quasielliptic fibration. Theorem 7.15 expresses the dualizing sheaf ω. of . in the form
23#
發(fā)表于 2025-3-25 13:04:03 | 只看該作者
Ruled Surfaces. The Noether-Tsen Criterion,A surface . is a . if there exists a nonsingular projective curve . such that . is birationally isomorphic to P. × ..
24#
發(fā)表于 2025-3-25 16:41:11 | 只看該作者
25#
發(fā)表于 2025-3-25 20:21:27 | 只看該作者
Zariski Decomposition and Applications,In this chapter we present Zariski’s theory of finite generation of the graded algebra . (., .) associated to a divisor . on a surface ., cf. [Zar1] and some more recent developments related to this theory.
26#
發(fā)表于 2025-3-26 02:11:58 | 只看該作者
27#
發(fā)表于 2025-3-26 08:06:05 | 只看該作者
28#
發(fā)表于 2025-3-26 10:06:46 | 只看該作者
978-1-4419-3149-8Springer-Verlag New York 2001
29#
發(fā)表于 2025-3-26 16:26:52 | 只看該作者
Murray Gerstenhaber,Samuel D. Schack let .: . → . be its canonical projection. Let . ∈ . be a closed point on the fiber .. = ..(.), . = . (.), and let .be the quadratic transformation of . with center .. Then the proper transform F′ of .. on .has ..(F′) = 0 and (F′.) = ?1, because ..(Fb) = 0 and (F..) = 0. In other words, F′ is an exc
30#
發(fā)表于 2025-3-26 18:25:48 | 只看該作者
Minimal Models of Ruled Surfaces, let .: . → . be its canonical projection. Let . ∈ . be a closed point on the fiber .. = ..(.), . = . (.), and let .be the quadratic transformation of . with center .. Then the proper transform F′ of .. on .has ..(F′) = 0 and (F′.) = ?1, because ..(Fb) = 0 and (F..) = 0. In other words, F′ is an exc
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 09:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新巴尔虎左旗| 揭阳市| 休宁县| 昌图县| 手游| 阿拉善右旗| 彝良县| 郑州市| 德江县| 西和县| 塘沽区| 抚宁县| 玛曲县| 荆门市| 准格尔旗| 邢台县| 沾益县| 汨罗市| 炎陵县| 温州市| 灵武市| 靖西县| 鸡西市| 嘉峪关市| 鄂托克前旗| 岐山县| 松阳县| 嘉义市| 庆安县| 大洼县| 来宾市| 旬邑县| 双江| 崇州市| 化州市| 垫江县| 如皋市| 河南省| 常熟市| 西乡县| 雅安市|