找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Structures and Applications; SPAS 2017, V?ster?s Sergei Silvestrov,Anatoliy Malyarenko,Milica Ran?i Conference proceedings 2020

[復(fù)制鏈接]
樓主: GUAFF
51#
發(fā)表于 2025-3-30 10:31:35 | 只看該作者
Ore Extensions of Function Algebras,In this article we consider the Ore extension algebra for the algebra .?of functions?with finite support on a countable set. We derive explicit?formulas for twisted derivations on . give a description?for the centralizer of . and the center of the Ore extension algebra under specific conditions.
52#
發(fā)表于 2025-3-30 13:24:38 | 只看該作者
53#
發(fā)表于 2025-3-30 16:35:34 | 只看該作者
über den Umgang der Justiz mit Kritiked BiHom-Lie-Leibniz algebra and study various type of .-ary BiHom-Lie algebras and BiHom-associative algebras. We show that .-ary BiHom-Lie-Leibniz algebra can be represented by BiHom-Lie-Leibniz algebra through fundamental objects. Moreover, we provide some key constructions and study .-ary BiHom-Lie algebras induced by .-ary BiHom-Lie algebra.
54#
發(fā)表于 2025-3-31 00:10:26 | 只看該作者
55#
發(fā)表于 2025-3-31 03:42:01 | 只看該作者
On ,-ary Generalization of BiHom-Lie Algebras and BiHom-Associative Algebras,ed BiHom-Lie-Leibniz algebra and study various type of .-ary BiHom-Lie algebras and BiHom-associative algebras. We show that .-ary BiHom-Lie-Leibniz algebra can be represented by BiHom-Lie-Leibniz algebra through fundamental objects. Moreover, we provide some key constructions and study .-ary BiHom-Lie algebras induced by .-ary BiHom-Lie algebra.
56#
發(fā)表于 2025-3-31 05:18:46 | 只看該作者
On Solvability and Nilpotency for ,-Hom-Lie Algebras and ,-Hom-Lie Algebras Induced by ,-Hom-Lie Aland to study their properties. We define .-derived series, .-central descending series and study their properties, we show that .-solvability is a radical property and we apply all of the above to the case of .-Hom-Lie algebras induced by .-Hom-Lie algebras.
57#
發(fā)表于 2025-3-31 10:54:24 | 只看該作者
58#
發(fā)表于 2025-3-31 13:58:55 | 只看該作者
59#
發(fā)表于 2025-3-31 20:40:16 | 只看該作者
60#
發(fā)表于 2025-4-1 00:15:51 | 只看該作者
über den Umgang der Justiz mit Kritiked BiHom-Lie-Leibniz algebra and study various type of .-ary BiHom-Lie algebras and BiHom-associative algebras. We show that .-ary BiHom-Lie-Leibniz algebra can be represented by BiHom-Lie-Leibniz algebra through fundamental objects. Moreover, we provide some key constructions and study .-ary BiHom-
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安化县| 秦安县| 即墨市| 汪清县| 工布江达县| 壤塘县| 炉霍县| 平乡县| 台北市| 莆田市| 砚山县| 交城县| 靖安县| 宜城市| 泸水县| 平和县| 攀枝花市| 天等县| 临猗县| 垦利县| 枣庄市| 昆山市| 遂川县| 广昌县| 林口县| 沁源县| 崇义县| 荆门市| 上饶县| 和平区| 祥云县| 万盛区| 英德市| 宁都县| 苗栗县| 云安县| 视频| 若尔盖县| 乌拉特中旗| 华容县| 鸡泽县|