找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Algebraic Structures and Applications; SPAS 2017, V?ster?s Sergei Silvestrov,Anatoliy Malyarenko,Milica Ran?i Conference proceedings 2020

[復(fù)制鏈接]
樓主: GUAFF
51#
發(fā)表于 2025-3-30 10:31:35 | 只看該作者
Ore Extensions of Function Algebras,In this article we consider the Ore extension algebra for the algebra .?of functions?with finite support on a countable set. We derive explicit?formulas for twisted derivations on . give a description?for the centralizer of . and the center of the Ore extension algebra under specific conditions.
52#
發(fā)表于 2025-3-30 13:24:38 | 只看該作者
53#
發(fā)表于 2025-3-30 16:35:34 | 只看該作者
über den Umgang der Justiz mit Kritiked BiHom-Lie-Leibniz algebra and study various type of .-ary BiHom-Lie algebras and BiHom-associative algebras. We show that .-ary BiHom-Lie-Leibniz algebra can be represented by BiHom-Lie-Leibniz algebra through fundamental objects. Moreover, we provide some key constructions and study .-ary BiHom-Lie algebras induced by .-ary BiHom-Lie algebra.
54#
發(fā)表于 2025-3-31 00:10:26 | 只看該作者
55#
發(fā)表于 2025-3-31 03:42:01 | 只看該作者
On ,-ary Generalization of BiHom-Lie Algebras and BiHom-Associative Algebras,ed BiHom-Lie-Leibniz algebra and study various type of .-ary BiHom-Lie algebras and BiHom-associative algebras. We show that .-ary BiHom-Lie-Leibniz algebra can be represented by BiHom-Lie-Leibniz algebra through fundamental objects. Moreover, we provide some key constructions and study .-ary BiHom-Lie algebras induced by .-ary BiHom-Lie algebra.
56#
發(fā)表于 2025-3-31 05:18:46 | 只看該作者
On Solvability and Nilpotency for ,-Hom-Lie Algebras and ,-Hom-Lie Algebras Induced by ,-Hom-Lie Aland to study their properties. We define .-derived series, .-central descending series and study their properties, we show that .-solvability is a radical property and we apply all of the above to the case of .-Hom-Lie algebras induced by .-Hom-Lie algebras.
57#
發(fā)表于 2025-3-31 10:54:24 | 只看該作者
58#
發(fā)表于 2025-3-31 13:58:55 | 只看該作者
59#
發(fā)表于 2025-3-31 20:40:16 | 只看該作者
60#
發(fā)表于 2025-4-1 00:15:51 | 只看該作者
über den Umgang der Justiz mit Kritiked BiHom-Lie-Leibniz algebra and study various type of .-ary BiHom-Lie algebras and BiHom-associative algebras. We show that .-ary BiHom-Lie-Leibniz algebra can be represented by BiHom-Lie-Leibniz algebra through fundamental objects. Moreover, we provide some key constructions and study .-ary BiHom-
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泸西县| 蒙山县| 新丰县| 翼城县| 双桥区| 盘锦市| 清涧县| 竹北市| 承德市| 海丰县| 长海县| 西充县| 夏津县| 崇礼县| 高淳县| 盖州市| 张家港市| 香格里拉县| 忻州市| 夏邑县| 三穗县| 宁晋县| 横峰县| 双桥区| 鄱阳县| 绥芬河市| 佳木斯市| 东台市| 松江区| 道真| 达拉特旗| 台南市| 晋城| 双柏县| 景德镇市| 长沙市| 阿城市| 琼结县| 遂昌县| 曲水县| 容城县|