找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Perspectives on Substructural Logics; Davide Fazio,Antonio Ledda,Francesco Paoli Book 2021 Springer Nature Switzerland AG 2021 S

[復(fù)制鏈接]
樓主: chondrocyte
31#
發(fā)表于 2025-3-27 00:20:26 | 只看該作者
Editorial Introduction,After providing an overview of the algebraic investigations into substructural logics in a historical perspective, with a special focus on their relationships with quantum logics, we summarise the contents of the subsequent chapters of this volume.
32#
發(fā)表于 2025-3-27 04:40:50 | 只看該作者
33#
發(fā)表于 2025-3-27 06:51:28 | 只看該作者
34#
發(fā)表于 2025-3-27 13:20:17 | 只看該作者
978-3-030-52165-3Springer Nature Switzerland AG 2021
35#
發(fā)表于 2025-3-27 14:37:24 | 只看該作者
36#
發(fā)表于 2025-3-27 21:01:12 | 只看該作者
https://doi.org/10.1007/978-3-642-20904-8e try to introduce an implication in these lattices which can be easily axiomatized and which yields a nice lattice structure. As shown in the paper, this can be realized in several different ways. Moreover, we reveal the connection of weakly and dually weakly orthomodular lattices to residuated str
37#
發(fā)表于 2025-3-27 23:20:15 | 只看該作者
https://doi.org/10.1007/978-3-642-20904-8hen these operators are transformed into lattice terms and the poset . is completed to its Dedekind–MacNeille completion . then the complete lattice . becomes a residuated lattice with respect to these transformed terms. It is shown that this holds in particular for Boolean posets and for relatively
38#
發(fā)表于 2025-3-28 02:56:41 | 只看該作者
https://doi.org/10.1007/978-3-642-20904-8ttices and Kleene algebras with an extra unary operation. We study in the framework of PBZ.–lattices two constructions—the ordinal sum construction and the horizontal sum construction—that have been widely used in the investigation of both quantum structures and residuated structures. We provide axi
39#
發(fā)表于 2025-3-28 06:34:20 | 只看該作者
40#
發(fā)表于 2025-3-28 12:06:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 02:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绍兴县| 昌乐县| 和平县| 类乌齐县| 舒城县| 治县。| 威远县| 资兴市| 连州市| 杭锦后旗| 宁远县| 巴林左旗| 澄江县| 闽侯县| 莎车县| 松潘县| 和林格尔县| 临夏市| 临沂市| 酉阳| 青岛市| 花垣县| 拉萨市| 莱西市| 连州市| 昆明市| 太仆寺旗| 侯马市| 甘南县| 十堰市| 灵山县| 邻水| 永福县| 北流市| 廉江市| 锡林郭勒盟| 温州市| 藁城市| 兴仁县| 大悟县| 尚义县|