找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Number Theory; Serge Lang Textbook 1994Latest edition Springer Science+Business Media New York 1994 algebraic number theory.anal

[復制鏈接]
樓主: 女孩
31#
發(fā)表于 2025-3-26 21:01:35 | 只看該作者
32#
發(fā)表于 2025-3-27 02:11:29 | 只看該作者
33#
發(fā)表于 2025-3-27 09:01:25 | 只看該作者
34#
發(fā)表于 2025-3-27 09:33:56 | 只看該作者
https://doi.org/10.1007/978-3-658-40724-7Using the integrals expressing the zeta function, one can give certain estimates concerning its residue in order to derive asymptotic results relating the class number, regulator, and discriminant of a number field, and notably the following.
35#
發(fā)表于 2025-3-27 14:45:51 | 只看該作者
Algebraic IntegersThis chapter describes the basic aspects of the ring of algebraic integers in a number field (always assumed to be of finite degree over the rational numbers .). This includes the general prime ideal structure.
36#
發(fā)表于 2025-3-27 19:20:44 | 只看該作者
CompletionsThis chapter introduces the completions of number fields under the p-adic topologies, and also the completions obtained by embedding the number field into the real or complex numbers.
37#
發(fā)表于 2025-3-28 01:03:06 | 只看該作者
The Different and DiscriminantThe study of the different and discriminant provides some information on ramified primes, and also gives a sort of duality which plays a role both in the algebraic study of ramification and the later chapters on analytic duality. It also gives a good method for computing the ring of algebraic integers in a number field, as in Proposition 10.
38#
發(fā)表于 2025-3-28 05:51:20 | 只看該作者
ParallelotopesThis chapter gives quantitative results concerning the distribution of elements of a number field in parallelotopes.
39#
發(fā)表于 2025-3-28 08:48:03 | 只看該作者
40#
發(fā)表于 2025-3-28 14:23:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
建始县| 嘉黎县| 临清市| 邵阳市| 淮安市| 津南区| 宜都市| 岑巩县| 九台市| 延寿县| 通河县| 三江| 奉新县| 青神县| 金阳县| 咸丰县| 云和县| 巴林右旗| 资阳市| 分宜县| 桃源县| 津市市| 台东县| 咸宁市| 江源县| 梁河县| 榆树市| 荆门市| 泾川县| 荣成市| 葵青区| 横峰县| 安多县| 八宿县| 文化| 甘肃省| 故城县| 武强县| 博野县| 内丘县| 石景山区|