找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Number Theory; Serge Lang Textbook 1994Latest edition Springer Science+Business Media New York 1994 algebraic number theory.anal

[復(fù)制鏈接]
樓主: 女孩
21#
發(fā)表于 2025-3-25 05:44:20 | 只看該作者
22#
發(fā)表于 2025-3-25 08:33:18 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/a/image/152688.jpg
23#
發(fā)表于 2025-3-25 13:24:45 | 只看該作者
24#
發(fā)表于 2025-3-25 19:43:14 | 只看該作者
Density of Primes and Tauberian Theoremlized arithmetic progressions determined by Hecke characters. In addition to giving a density for primes in given ideal classes, it also gives densities for primes distributed suitably in Euclidean .-space.
25#
發(fā)表于 2025-3-25 22:53:10 | 只看該作者
Brucella: Potential Biothreat Agent,This chapter describes the basic aspects of the ring of algebraic integers in a number field (always assumed to be of finite degree over the rational numbers .). This includes the general prime ideal structure.
26#
發(fā)表于 2025-3-26 00:13:23 | 只看該作者
The Economics of Disarmament and ConversionThis chapter introduces the completions of number fields under the p-adic topologies, and also the completions obtained by embedding the number field into the real or complex numbers.
27#
發(fā)表于 2025-3-26 06:17:44 | 只看該作者
Policy Drivers and Issues in EuropeThe study of the different and discriminant provides some information on ramified primes, and also gives a sort of duality which plays a role both in the algebraic study of ramification and the later chapters on analytic duality. It also gives a good method for computing the ring of algebraic integers in a number field, as in Proposition 10.
28#
發(fā)表于 2025-3-26 09:47:03 | 只看該作者
29#
發(fā)表于 2025-3-26 15:25:02 | 只看該作者
Coman Adrian Viorel,Teodorescu C?t?linaWe recall the formula for summation by parts. If {..} and {..} are sequences of complex numbers, and if we let . be the partial sums, then . We shall consider series . where {..} is a sequence of complex numbers, and . is a complex variable. We write . = . + . with ., . real.
30#
發(fā)表于 2025-3-26 20:51:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潜山县| 台中市| 乐昌市| 突泉县| 高州市| 海阳市| 那曲县| 曲沃县| 上犹县| 东明县| 祁连县| 龙山县| 蓬溪县| 叶城县| 吐鲁番市| 文水县| 如东县| 许昌市| 江山市| 伊吾县| 南部县| 桐柏县| 紫阳县| 常山县| 平南县| 长宁区| 松溪县| 陕西省| 城市| 湘乡市| 浏阳市| 花莲县| 兴城市| 安岳县| 中超| 北票市| 娄底市| 郧西县| 浙江省| 汝城县| 冕宁县|