找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Number Theory; Jürgen Neukirch Book 1999 The Editor(s) (if applicable) and The Author(s) 1999 Algebraic Number Theory.Arithmetic

[復制鏈接]
查看: 49838|回復: 38
樓主
發(fā)表于 2025-3-21 18:27:51 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Algebraic Number Theory
影響因子2023Jürgen Neukirch
視頻videohttp://file.papertrans.cn/153/152684/152684.mp4
發(fā)行地址The author‘s enthusiasm for this topic is rarely as evident for the reader as in this book. - A good book, a beautiful book.".F. Lorenz in: Deutsche Mathematiker Vereinigung, 1995.Includes supplementa
學科分類Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: Algebraic Number Theory;  Jürgen Neukirch Book 1999 The Editor(s) (if applicable) and The Author(s) 1999 Algebraic Number Theory.Arithmetic
影響因子From the review: "The present book has as its aim to resolve a discrepancy in the textbook literature and ... to provide a comprehensive introduction to algebraic number theory which is largely based on the modern, unifying conception of (one-dimensional) arithmetic algebraic geometry. ... Despite this exacting program, the book remains an introduction to algebraic number theory for the beginner... The author discusses the classical concepts from the viewpoint of Arakelov theory.... The treatment of class field theory is ... particularly rich in illustrating complements, hints for further study, and concrete examples.... The concluding chapter VII on zeta-functions and L-series is another outstanding advantage of the present textbook.... The book is, without any doubt, the most up-to-date, systematic, and theoretically comprehensive textbook on algebraic number field theory available." .W. Kleinert in: .Zentralblatt für Mathematik., 1992
Pindex Book 1999
The information of publication is updating

書目名稱Algebraic Number Theory影響因子(影響力)




書目名稱Algebraic Number Theory影響因子(影響力)學科排名




書目名稱Algebraic Number Theory網(wǎng)絡公開度




書目名稱Algebraic Number Theory網(wǎng)絡公開度學科排名




書目名稱Algebraic Number Theory被引頻次




書目名稱Algebraic Number Theory被引頻次學科排名




書目名稱Algebraic Number Theory年度引用




書目名稱Algebraic Number Theory年度引用學科排名




書目名稱Algebraic Number Theory讀者反饋




書目名稱Algebraic Number Theory讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:03:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:05:16 | 只看該作者
Abstract Class Field Theory,nsion will have infinite degree. It does, however, have the advantage of collecting all finite Galois extensions of .. This is why it is reasonable to try to give it a prominent place in Galois theory. But such an attempt faces the difficulty that the main theorem of Galois theory does not remain tr
地板
發(fā)表于 2025-3-22 06:30:43 | 只看該作者
5#
發(fā)表于 2025-3-22 09:55:19 | 只看該作者
Global Class Field Theory,. The notion of idèle is a modification of the notion of ideal. It was introduced by the French mathematician . (1909–1984) with a view to providing a suitable basis for the important local-to-global principle, i.e., for the principle which reduces problems concerning a number field . to analogous p
6#
發(fā)表于 2025-3-22 16:12:37 | 只看該作者
7#
發(fā)表于 2025-3-22 17:59:48 | 只看該作者
8#
發(fā)表于 2025-3-22 23:09:31 | 只看該作者
9#
發(fā)表于 2025-3-23 03:03:40 | 只看該作者
George Younger, January 1986-July 1989, try to give it a prominent place in Galois theory. But such an attempt faces the difficulty that the main theorem of Galois theory does not remain true for infinite extensions. Let us explain this in the following
10#
發(fā)表于 2025-3-23 08:53:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 12:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
同仁县| 孟津县| 南宫市| 科技| 塔城市| 新闻| 阿合奇县| 肥城市| 江孜县| 茌平县| 揭西县| 民乐县| 马龙县| 建水县| 横山县| 封开县| 辽宁省| 卢龙县| 城口县| 敦煌市| 嵩明县| 随州市| 富阳市| 化德县| 楚雄市| 黑河市| 贵港市| 永登县| 容城县| 增城市| 凤山市| 信丰县| 长顺县| 宁强县| 湟源县| 麻阳| 溧阳市| 淮阳县| 綦江县| 苍梧县| 宁明县|