找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Multiplicity of Eigenvalues of Linear Operators; J. López-Gómez,C. Mora-Corral Book 2007 Birkh?user Basel 2007 Eigenvalue.Matrix

[復(fù)制鏈接]
樓主: 傷害
41#
發(fā)表于 2025-3-28 15:01:08 | 只看該作者
0255-0156 re reached in case K = R, since in the case K = C and r = 1, most of its contents are classic, except for the axiomatization theorem of the multiplicity.978-3-7643-8401-2Series ISSN 0255-0156 Series E-ISSN 2296-4878
42#
發(fā)表于 2025-3-28 19:52:45 | 只看該作者
43#
發(fā)表于 2025-3-28 23:10:17 | 只看該作者
44#
發(fā)表于 2025-3-29 05:21:35 | 只看該作者
Operator Calculusppropriate definition of .(.) when . is an arbitrary function, as well as in studying the most important analytical properties of .(.). This chapter covers these issues for the special, but important, case when . is a certain holomorphic function and ..
45#
發(fā)表于 2025-3-29 10:23:51 | 只看該作者
Spectral Projectionso shows that, for each . ∈ .(.), the algebraic ascent .(.) equals the order of . as a pole of the associated resolvent operator . Precisely, this chapter is structured as follows. Section 3.1 gives a universal estimate for the norm of the inverse of a matrix in terms of its determinant and its norm.
46#
發(fā)表于 2025-3-29 11:45:30 | 只看該作者
Algebraic Multiplicity Through Transversalizationat . When . ∈ Eig., the point . is said to be an . of . if there exist . > 0 and . ≥ 1 such that, for each 0 < |. ? .| < ., the operator . is an isomorphism and . The main goal of this chapter is to introduce the concept of algebraic multiplicity of . at any algebraic eigenvalue .. This algebraic mu
47#
發(fā)表于 2025-3-29 15:53:21 | 只看該作者
Algebraic Multiplicity Through Jordan Chains. Smith Formralized eigenvectors, already studied in Section 1.3. It will provide us with a further approach to the algebraic multiplicities . and . introduced and analyzed in Chapters 4 and 5, respectively, whose axiomatization has already been accomplished through the uniqueness theorems included in Chapter 6
48#
發(fā)表于 2025-3-29 20:32:01 | 只看該作者
49#
發(fā)表于 2025-3-30 02:06:15 | 只看該作者
The Spectral Theorem for Matrix Polynomialsature. More precisely, the family . defined in (10.1) is said to be a matrix polynomial of order . and degree .. The main goal of this chapter is to obtain a spectral theorem for matrix polynomials, respecting the spirit of the Jordan Theorem 1.2.1.
50#
發(fā)表于 2025-3-30 07:52:49 | 只看該作者
Nonlinear Eigenvalues ., an integer number . ≥ 0, a family . . .(Ω,.(.)), and a nonlinear map . .(Ω × ., .) satisfying the following conditions: . .(.) ? . .(.) for every . Ω, i.e., .(.) is a compact perturbation of the identity map. . . is compact, i.e., the image by . of any bounded set of Ω × . is relatively compact
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙泉市| 昌宁县| 江永县| 淮滨县| 东辽县| 孝义市| 怀宁县| 建水县| 务川| 将乐县| 镇康县| 乌拉特前旗| 体育| 望都县| 贞丰县| 美姑县| 满洲里市| 木兰县| 潞城市| 万荣县| 合江县| 龙山县| 遂川县| 达拉特旗| 西畴县| 黄山市| 县级市| 兴业县| 汝阳县| 盱眙县| 乐东| 珠海市| 鲁甸县| 孟村| 四会市| 尚义县| 南京市| 墨竹工卡县| 伽师县| 武邑县| 永年县|