找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Modeling of Topological and Computational Structures and Applications; THALES, Athens, Gree Sofia Lambropoulou,Doros Theodorou,Lo

[復(fù)制鏈接]
樓主: Encounter
41#
發(fā)表于 2025-3-28 16:46:56 | 只看該作者
Oxygen Precipitation in Silicon,In this paper we study the kernel of the homomorphism . of the braid group . in the handlebody . to the braid group .. We prove that this kernel is semi-direct product of free groups. Also, we introduce an algebra ., which is some analog of the Hecke algebra ., constructed by the braid group?..
42#
發(fā)表于 2025-3-28 21:42:42 | 只看該作者
43#
發(fā)表于 2025-3-29 02:51:08 | 只看該作者
Representation Theory of Framisations of Knot AlgebrasWe study the algebraic structure and the representation theory of the Yokonuma–Hecke algebra of type ., its generalisations, the affine and cyclotomic Yokonuma–Hecke algebras, and its Temperley–Lieb type quotients, the Yokonuma–Temperley–Lieb algebra, the Framisation of the Temperley–Lieb algebra and the Complex Reflection Temperley–Lieb algebra.
44#
發(fā)表于 2025-3-29 06:47:15 | 只看該作者
45#
發(fā)表于 2025-3-29 11:01:01 | 只看該作者
46#
發(fā)表于 2025-3-29 14:42:38 | 只看該作者
47#
發(fā)表于 2025-3-29 16:24:07 | 只看該作者
Interfacial Fracture in Alloy Steelshe Yokonuma–Hecke algebra of type .. More precisely, we present all three possible quotient algebras the emerged during this construction and we discuss their dimension, linear bases, representation theory and the necessary and sufficient conditions for the unique Markov trace of the Yokonuma–Hecke
48#
發(fā)表于 2025-3-29 23:23:24 | 只看該作者
49#
發(fā)表于 2025-3-30 01:25:31 | 只看該作者
Fatigue Crack Initiation with Creephe other one was recently introduced by the author, J. Juyumaya and S. Lambropoulou. The purpose of this paper is to show the main concepts and results of both framizations, giving emphasis to the second one, and to provide a preliminary comparison of the invariants constructed from both framization
50#
發(fā)表于 2025-3-30 04:51:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汶上县| 招远市| 邳州市| 那曲县| 陵川县| 株洲县| 赤城县| 芒康县| 平和县| 都安| 信宜市| 古交市| 岳池县| 阿拉善盟| 苗栗县| 莱州市| 安顺市| 开鲁县| 雅江县| 岳阳市| 峨眉山市| 金华市| 镇原县| 屯留县| 普兰县| 黄大仙区| 黎川县| 古浪县| 石景山区| 如东县| 平顶山市| 丹巴县| 福鼎市| 大竹县| 华容县| 禹州市| 漯河市| 塔河县| 芦溪县| 吴桥县| 香港 |