找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic K-theory of Crystallographic Groups; The Three-Dimensiona Daniel Scott Farley,Ivonne Johanna Ortiz Book 2014 Springer Internation

[復(fù)制鏈接]
查看: 9346|回復(fù): 44
樓主
發(fā)表于 2025-3-21 19:33:36 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Algebraic K-theory of Crystallographic Groups
期刊簡稱The Three-Dimensiona
影響因子2023Daniel Scott Farley,Ivonne Johanna Ortiz
視頻videohttp://file.papertrans.cn/153/152655/152655.mp4
發(fā)行地址Contains an elementary classification of the arithmetic classes of three-dimensional crystallographic groups.Gives a clear construction, for a geometrically important class of groups, of the classifyi
學(xué)科分類Lecture Notes in Mathematics
圖書封面Titlebook: Algebraic K-theory of Crystallographic Groups; The Three-Dimensiona Daniel Scott Farley,Ivonne Johanna Ortiz Book 2014 Springer Internation
影響因子The Farrell-Jones isomorphism conjecture in algebraic K-theory offers a description of the algebraic K-theory of a group using a generalized homology theory. In cases where the conjecture is known to be a theorem, it gives a powerful method for computing the lower algebraic K-theory of a group. This book contains a computation of the lower algebraic K-theory of the split three-dimensional crystallographic groups, a geometrically important class of three-dimensional crystallographic group, representing a third of the total number. The book leads the reader through all aspects of the calculation. The first chapters describe the split crystallographic groups and their classifying spaces. Later chapters assemble the techniques that are needed to apply the isomorphism theorem. The result is a useful starting point for researchers who are interested in the computational side of the Farrell-Jones isomorphism conjecture, and a contribution to the growing literature in the field.
Pindex Book 2014
The information of publication is updating

書目名稱Algebraic K-theory of Crystallographic Groups影響因子(影響力)




書目名稱Algebraic K-theory of Crystallographic Groups影響因子(影響力)學(xué)科排名




書目名稱Algebraic K-theory of Crystallographic Groups網(wǎng)絡(luò)公開度




書目名稱Algebraic K-theory of Crystallographic Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algebraic K-theory of Crystallographic Groups被引頻次




書目名稱Algebraic K-theory of Crystallographic Groups被引頻次學(xué)科排名




書目名稱Algebraic K-theory of Crystallographic Groups年度引用




書目名稱Algebraic K-theory of Crystallographic Groups年度引用學(xué)科排名




書目名稱Algebraic K-theory of Crystallographic Groups讀者反饋




書目名稱Algebraic K-theory of Crystallographic Groups讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:56:00 | 只看該作者
Book 2014o apply the isomorphism theorem. The result is a useful starting point for researchers who are interested in the computational side of the Farrell-Jones isomorphism conjecture, and a contribution to the growing literature in the field.
板凳
發(fā)表于 2025-3-22 04:07:15 | 只看該作者
Book 2014theory. In cases where the conjecture is known to be a theorem, it gives a powerful method for computing the lower algebraic K-theory of a group. This book contains a computation of the lower algebraic K-theory of the split three-dimensional crystallographic groups, a geometrically important class o
地板
發(fā)表于 2025-3-22 04:34:11 | 只看該作者
Algebraic K-theory of Crystallographic Groups978-3-319-08153-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
5#
發(fā)表于 2025-3-22 11:34:03 | 只看該作者
Monika Jyotiyana,Nishtha Kesswani of abelian groups . .(.). The first two of these groups, . . and . ., are easy to describe in concrete terms. For instance, a finitely generated projective .-module defines an element of . .(.), and an invertible matrix over . has a “determinant” in . .(.). The entire sequence of groups . .(.) behaves something like a homology theory of rings.
6#
發(fā)表于 2025-3-22 15:04:52 | 只看該作者
https://doi.org/10.1007/978-3-319-70163-9groups. For . = 1, ., 7, we let ., where .. is the .th lattice (in the order that the, where .. is the .th lattice (in the order that the lattices are listed in Table 4.1) and .. is the maximal point group to be paired with ... For instance,
7#
發(fā)表于 2025-3-22 19:04:39 | 只看該作者
8#
發(fā)表于 2025-3-22 22:26:30 | 只看該作者
https://doi.org/10.1007/978-3-319-08153-320H15,19B28,19A31,19D35; Algebraic K-theory; Classifying spaces; Crystallographic groups; Farrell-Jones
9#
發(fā)表于 2025-3-23 02:04:06 | 只看該作者
978-3-319-08152-6Springer International Publishing Switzerland 2014
10#
發(fā)表于 2025-3-23 09:08:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 13:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莱州市| 论坛| 塘沽区| 宁都县| 潜山县| 陆良县| 西青区| 英超| 泾源县| 防城港市| 治多县| 宽甸| 敦煌市| 安多县| 醴陵市| 霞浦县| 庆元县| 邹平县| 康乐县| 星子县| 阿克苏市| 通化市| 罗平县| 江华| 平山县| 郧西县| 昌平区| 桐柏县| 宁夏| 香河县| 平度市| 五家渠市| 常山县| 普定县| 鸡泽县| 五寨县| 德兴市| 黄龙县| 习水县| 渝北区| 阳春市|