找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic K-Theory: Connections with Geometry and Topology; J. F. Jardine,V. P. Snaith Book 1989 Springer Science+Business Media Dordrecht

[復(fù)制鏈接]
樓主: 懇求
21#
發(fā)表于 2025-3-25 04:10:22 | 只看該作者
Kahler Diferentials and HC1 of Certain Graded K-Algebras,itly in some cases, such as the co-ordinate axes, co-ordinate planes, or certain cusps. Partial results are obtained for general lines or planes through the origin..The appendix by C. Weibel discusses the relationship between my results and Algebraic K-theory.
22#
發(fā)表于 2025-3-25 09:11:21 | 只看該作者
23#
發(fā)表于 2025-3-25 13:35:32 | 只看該作者
Beanspruchung stabf?rmiger Bauteilee reduce it to a duality theorem for etale cohomology groups of the ring of integers of a number field or a curve over a finite field, which is essentially equivalent to the original theorem of Poitou and Tate.
24#
發(fā)表于 2025-3-25 18:02:30 | 只看該作者
25#
發(fā)表于 2025-3-25 23:43:48 | 只看該作者
26#
發(fā)表于 2025-3-26 02:39:30 | 只看該作者
27#
發(fā)表于 2025-3-26 06:49:36 | 只看該作者
1389-2185 ake Louise, Alberta, Canada from December 7 to December 11 of 1987. This meeting was jointly supported by NATO and the Natural Sciences and Engineering Research Council of Canada, and was sponsored in part by the Canadian Mathematical Society. This book is the volume of proceedings for that meeting.
28#
發(fā)表于 2025-3-26 08:40:06 | 只看該作者
29#
發(fā)表于 2025-3-26 14:20:42 | 只看該作者
Erg?nzungen zur H?heren Mathematikthe characteristic of the residue field). Using this result, we prove the finiteness of the prime to p torsion in the second Chow group of certain varieties over p-adic fields. We also prove similar results for other K-cohomology groups.
30#
發(fā)表于 2025-3-26 17:59:18 | 只看該作者
https://doi.org/10.1007/978-3-642-38891-0 representation rings, the behaviour of the canonical form wwith respect to Adams operations and a description of a refinement of Explicit Brauer Induction to produce canonical ‘monomial resolutions’ of representations of finite groups.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鞍山市| 青田县| 友谊县| 石渠县| 格尔木市| 临桂县| 和平区| 余江县| 许昌县| 车致| 东港市| 阿克陶县| 固阳县| 泗洪县| 鞍山市| 新晃| 天柱县| 商城县| 于都县| 丹棱县| 资中县| 巩义市| 大连市| 南宁市| 北票市| 巫山县| 依兰县| 天柱县| 锦州市| 夏邑县| 从江县| 江源县| 丹巴县| 尼勒克县| 南昌市| 湖北省| 南雄市| 昌宁县| 乐至县| 孟村| 托克托县|