找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic K-Theory and Its Applications; Jonathan Rosenberg Textbook 1994 Springer-Verlag New York, Inc. 1994 Algebraic K-theory.Homologic

[復(fù)制鏈接]
查看: 13967|回復(fù): 36
樓主
發(fā)表于 2025-3-21 19:44:50 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Algebraic K-Theory and Its Applications
影響因子2023Jonathan Rosenberg
視頻videohttp://file.papertrans.cn/153/152651/152651.mp4
學(xué)科分類(lèi)Graduate Texts in Mathematics
圖書(shū)封面Titlebook: Algebraic K-Theory and Its Applications;  Jonathan Rosenberg Textbook 1994 Springer-Verlag New York, Inc. 1994 Algebraic K-theory.Homologic
影響因子Algebraic K-Theory plays an important role in many areas of modern mathematics: most notably algebraic topology, number theory, and algebraic geometry, but even including operator theory. The broad range of these topics has tended to give the subject an aura of inapproachability. This book, based on a course at the University of Maryland in the fall of 1990, is intended to enable graduate students or mathematicians working in other areas not only to learn the basics of algebraic K-Theory, but also to get a feel for its many applications. The required prerequisites are only the standard one-year graduate algebra course and the standard introductory graduate course on algebraic and geometric topology. Many topics from algebraic topology, homological algebra, and algebraic number theory are developed as needed. The final chapter gives a concise introduction to cyclic homology and its interrelationship with K-Theory.
Pindex Textbook 1994
The information of publication is updating

書(shū)目名稱Algebraic K-Theory and Its Applications影響因子(影響力)




書(shū)目名稱Algebraic K-Theory and Its Applications影響因子(影響力)學(xué)科排名




書(shū)目名稱Algebraic K-Theory and Its Applications網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Algebraic K-Theory and Its Applications網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Algebraic K-Theory and Its Applications被引頻次




書(shū)目名稱Algebraic K-Theory and Its Applications被引頻次學(xué)科排名




書(shū)目名稱Algebraic K-Theory and Its Applications年度引用




書(shū)目名稱Algebraic K-Theory and Its Applications年度引用學(xué)科排名




書(shū)目名稱Algebraic K-Theory and Its Applications讀者反饋




書(shū)目名稱Algebraic K-Theory and Its Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:39:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:45:02 | 只看該作者
地板
發(fā)表于 2025-3-22 06:53:47 | 只看該作者
5#
發(fā)表于 2025-3-22 11:54:21 | 只看該作者
https://doi.org/10.1007/978-3-031-32879-4ill seem a comforting retreat to more familiar territory. However, we will need to refer to the homology of a group, at least in order to speak of .. Since group homology will be needed in a more serious way in the next chapter anyway, we provide a brief introduction to the subject later in this sec
6#
發(fā)表于 2025-3-22 14:04:43 | 只看該作者
7#
發(fā)表于 2025-3-22 18:44:20 | 只看該作者
https://doi.org/10.1007/978-3-031-32879-4iewed as the “l(fā)inearization” of .-theory, in the same sense in which the matrix ring .(.) is the “l(fā)inearization” of the general linear group .(.). For motivation, it is useful to think of the case where the ring . is ? or ?. Then .(., .)is a Lie group, and the space .(., .). giving rise to the highe
8#
發(fā)表于 2025-3-23 00:59:04 | 只看該作者
9#
發(fā)表于 2025-3-23 03:26:02 | 只看該作者
10#
發(fā)表于 2025-3-23 09:01:59 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/a/image/152651.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 02:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
雷山县| 陵水| 成武县| 都匀市| 灵山县| 北票市| 甘洛县| 阿拉善盟| 庆元县| 临潭县| 平陆县| 兴化市| 宜城市| 无棣县| 花垣县| 阳江市| 丘北县| 临洮县| 湟源县| 扶绥县| 合江县| 株洲县| 靖安县| 喀喇沁旗| 富源县| 上思县| 阿城市| 屏山县| 莱州市| 乐都县| 五寨县| 保康县| 车险| 海安县| 营山县| 科技| 沙洋县| 兰考县| 台江县| 承德县| 南汇区|