找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic K-Theory; V. Srinivas Book 19911st edition Springer Science+Business Media New York 1991 algebra.Algebraic K-theory.K-theory

[復(fù)制鏈接]
樓主: 使入伍
11#
發(fā)表于 2025-3-23 12:47:36 | 只看該作者
https://doi.org/10.1007/978-3-030-93158-2Let S be an abelian monoid i.e. S has a commutative, associative binary operation with a 2-sided identity. We say that S acts on a set X if there is a homomorphism of monoids S → Hom. (X, X); if s ε S, the corresponding map of sets X → X is called translation by s. We say that S acts . on X if each translation is bijective.
12#
發(fā)表于 2025-3-23 14:56:56 | 只看該作者
https://doi.org/10.1007/978-3-030-93158-2Let F be a field, F? a separable closure of F, G = Gal (F?/F). Let n>0 be an integer relatively prime to char. F.
13#
發(fā)表于 2025-3-23 19:11:32 | 只看該作者
14#
發(fā)表于 2025-3-23 23:18:59 | 只看該作者
15#
發(fā)表于 2025-3-24 02:30:41 | 只看該作者
The K-Theory of Rings and Schemes,If R is a ring, let . (R) denote the category of finitely generated projective (left) R-modules. This is a full subcategory of the abelian category of left R-modules, so that . (R) is an exact category where all exact sequences are split. We will prove the following result, comparing the plus and Q constructions, in §7.
16#
發(fā)表于 2025-3-24 07:07:13 | 只看該作者
17#
發(fā)表于 2025-3-24 11:31:31 | 只看該作者
Comparison of the Plus and Q-Constructions,Let S be an abelian monoid i.e. S has a commutative, associative binary operation with a 2-sided identity. We say that S acts on a set X if there is a homomorphism of monoids S → Hom. (X, X); if s ε S, the corresponding map of sets X → X is called translation by s. We say that S acts . on X if each translation is bijective.
18#
發(fā)表于 2025-3-24 17:28:30 | 只看該作者
19#
發(fā)表于 2025-3-24 22:49:51 | 只看該作者
Algebraic K-Theory978-1-4899-6735-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
20#
發(fā)表于 2025-3-24 23:37:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 23:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
措美县| 乐亭县| 舟山市| 社旗县| 章丘市| 蒙山县| 南京市| 芒康县| 蓬溪县| 巴南区| 竹山县| 宁阳县| 文水县| 河源市| 合水县| 鹤岗市| 天台县| 松滋市| 绵竹市| 新郑市| 玉林市| 商洛市| 浮山县| 吉安县| 米易县| 和政县| 黄浦区| 湖州市| 桂林市| 甘孜县| 亚东县| 保定市| 河曲县| 农安县| 平陆县| 金湖县| 壶关县| 垣曲县| 岑巩县| 东源县| 襄樊市|