找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds; Classical and Quantu Anatoliy K. Prykarpatsky,Ihor V. Mykytiuk Book 19

[復(fù)制鏈接]
查看: 28562|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:33:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds
期刊簡(jiǎn)稱(chēng)Classical and Quantu
影響因子2023Anatoliy K. Prykarpatsky,Ihor V. Mykytiuk
視頻videohttp://file.papertrans.cn/153/152640/152640.mp4
學(xué)科分類(lèi)Mathematics and Its Applications
圖書(shū)封面Titlebook: Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds; Classical and Quantu Anatoliy K. Prykarpatsky,Ihor V. Mykytiuk Book 19
影響因子In recent times it has been stated that many dynamical systems of classical mathematical physics and mechanics are endowed with symplectic structures, given in the majority of cases by Poisson brackets. Very often such Poisson structures on corresponding manifolds are canonical, which gives rise to the possibility of producing their hidden group theoretical essence for many completely integrable dynamical systems. It is a well understood fact that great part of comprehensive integrability theories of nonlinear dynamical systems on manifolds is based on Lie-algebraic ideas, by means of which, in particular, the classification of such compatibly bi- Hamiltonian and isospectrally Lax type integrable systems has been carried out. Many chapters of this book are devoted to their description, but to our regret so far the work has not been completed. Hereby our main goal in each analysed case consists in separating the basic algebraic essence responsible for the complete integrability, and which is, at the same time, in some sense universal, i. e. , characteristic for all of them. Integrability analysis in the framework of a gradient-holonomic algorithm, devised in this book, is fulfilled
Pindex Book 1998
The information of publication is updating

書(shū)目名稱(chēng)Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds影響因子(影響力)




書(shū)目名稱(chēng)Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds被引頻次




書(shū)目名稱(chēng)Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds被引頻次學(xué)科排名




書(shū)目名稱(chēng)Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds年度引用




書(shū)目名稱(chēng)Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds年度引用學(xué)科排名




書(shū)目名稱(chēng)Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds讀者反饋




書(shū)目名稱(chēng)Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:30:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:50:06 | 只看該作者
Algebraic and differential geometric aspects of the integrability of nonlinear dynamical systems on
地板
發(fā)表于 2025-3-22 07:03:14 | 只看該作者
Algebraic Integrability of Nonlinear Dynamical Systems on ManifoldsClassical and Quantu
5#
發(fā)表于 2025-3-22 09:38:27 | 只看該作者
6#
發(fā)表于 2025-3-22 16:30:37 | 只看該作者
Book 1998nsists in separating the basic algebraic essence responsible for the complete integrability, and which is, at the same time, in some sense universal, i. e. , characteristic for all of them. Integrability analysis in the framework of a gradient-holonomic algorithm, devised in this book, is fulfilled
7#
發(fā)表于 2025-3-22 19:16:42 | 只看該作者
8#
發(fā)表于 2025-3-22 21:29:49 | 只看該作者
9#
發(fā)表于 2025-3-23 03:54:41 | 只看該作者
Dolors Costal,Ernest Teniente,Toni UrpíIt is known that all symmetric spaces . of semi-simple groups . possess this property (see (Timm, 1988), (Mishchenko, 1982), (Mykytiuk, 1983) and (Ii, 1982)). It will also be proved here that if, in addition, the groups . and . have a complex structure or are compact, then the following conditions are equivalent:
10#
發(fā)表于 2025-3-23 08:03:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 22:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
子洲县| 漳州市| 乌拉特中旗| 龙海市| 东源县| 武清区| 信阳市| 乌兰浩特市| 临城县| 蕉岭县| 阜宁县| 普宁市| 乌苏市| 文山县| 额济纳旗| 丰顺县| 荔波县| 法库县| 漳州市| 河南省| 策勒县| 巢湖市| 禹州市| 自贡市| 威信县| 石河子市| 张家川| 浦东新区| 开江县| 双江| 兴仁县| 斗六市| 微山县| 明溪县| 邵阳市| 澄江县| 铜梁县| 云安县| 隆安县| 汤原县| 库伦旗|