找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Informatics; 4th International Co Franz Winkler Conference proceedings 2011 Springer Berlin Heidelberg 2011 Groebner bases.algebr

[復(fù)制鏈接]
樓主: architect
31#
發(fā)表于 2025-3-26 23:25:28 | 只看該作者
32#
發(fā)表于 2025-3-27 05:10:23 | 只看該作者
33#
發(fā)表于 2025-3-27 07:03:07 | 只看該作者
34#
發(fā)表于 2025-3-27 11:27:33 | 只看該作者
35#
發(fā)表于 2025-3-27 15:12:15 | 只看該作者
36#
發(fā)表于 2025-3-27 21:29:17 | 只看該作者
Lecture Notes in Computer Scienceear to be useful in this context, leading to structural results on ...Here we survey some work of this type. At the end of the paper a new application of this kind is presented: an algebraic characterization of shattering-extremal families and a fast algorithm to recognize them.
37#
發(fā)表于 2025-3-28 01:24:54 | 只看該作者
38#
發(fā)表于 2025-3-28 04:13:41 | 只看該作者
https://doi.org/10.1007/978-3-030-64354-6al word rewrite system for a particular variety in which the classical approaches cannot be applied. Moreover, we obtain infinite single letter deleting rewrite systems for each join-irreducible variety.
39#
發(fā)表于 2025-3-28 07:57:34 | 只看該作者
Lecture Notes in Computer Scienceces thus providing the necessary structures to describe a two-part secret-sharing scheme based on Hadamard designs. Furthermore, we exhibit how some algebraic aspects of secret-sharing cryptography are interpreted in terms of combinatorial design theory, such as the access structure and the security of the secret-sharing schemes.
40#
發(fā)表于 2025-3-28 13:56:20 | 只看該作者
Some Combinatorial Applications of Gr?bner Basesear to be useful in this context, leading to structural results on ...Here we survey some work of this type. At the end of the paper a new application of this kind is presented: an algebraic characterization of shattering-extremal families and a fast algorithm to recognize them.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 04:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海兴县| 呼图壁县| 日喀则市| 来安县| 轮台县| 保山市| 常熟市| 灵台县| 平阴县| 临泉县| 汉中市| 重庆市| 太和县| 库尔勒市| 沙河市| 乌什县| 璧山县| 沙坪坝区| 通辽市| 麻江县| 莫力| 三门峡市| 旺苍县| 牟定县| 漯河市| 贵阳市| 冀州市| 含山县| 莒南县| 巴楚县| 古浪县| 河西区| 玉田县| 鲜城| 哈密市| 祁连县| 乳源| 水城县| 双峰县| 佛山市| 永平县|