找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Geometry between Tradition and Future; An Italian Perspecti Gilberto Bini Conference proceedings 2023 The Editor(s) (if applicabl

[復(fù)制鏈接]
樓主: 充裕
31#
發(fā)表于 2025-3-26 23:53:30 | 只看該作者
Peace Ecology in the AnthropoceneWe approach Guido Castelnuovo’s intellectual world by focusing on a trilogy of papers published in 1889 and by drawing a few remarks about Castelnuovo’s scientific interests and attitudes.
32#
發(fā)表于 2025-3-27 02:10:33 | 只看該作者
,Francesco Severi’s Mathematical Library,We introduce and offer the inventory of the mathematical library of Francesco Severi (1879–1961), which is held at the Istituto Nazionale di Alta Matematica (INdAM) in Rome.
33#
發(fā)表于 2025-3-27 05:28:59 | 只看該作者
From Enriques Surface to Artin-Mumford Counterexample,After an introduction to the themes of Enriques surfaces and rationality questions, the Artin-Mumford counterexample to Lüroth problem is revisited. Its realization is explicitly connected to Enriques surfaces, more precisely to the special family of Reye congruences and their classical geometry.
34#
發(fā)表于 2025-3-27 09:27:55 | 只看該作者
35#
發(fā)表于 2025-3-27 16:47:32 | 只看該作者
36#
發(fā)表于 2025-3-27 20:19:44 | 只看該作者
Algebraic Geometry between Tradition and Future978-981-19-8281-1Series ISSN 2281-518X Series E-ISSN 2281-5198
37#
發(fā)表于 2025-3-28 01:08:51 | 只看該作者
,White Rhodesian Society ca.1950s–1980s,Starting from Fano’s results, a large number of mathematicians, often part of opposing schools, have constructed a bunch of theories in the last 50 years, which are among the most spectacular achievements of contemporary mathematics.
38#
發(fā)表于 2025-3-28 02:55:22 | 只看該作者
https://doi.org/10.1007/978-3-030-32698-2tances favored his scientific maturation. The purpose of this essay is to highlight some less known aspects of his life and work taking into consideration the manuscripts and other unpublished documents kept in various archives in Italy and abroad. Three aspects are specially dealt with, namely:
39#
發(fā)表于 2025-3-28 09:57:32 | 只看該作者
Meg Parsons,Karen Fisher,Roa Petra Creasentents of both, which basically focus on the quest for an algebraic proof of the equality between the analytic and the arithmetic irregularity and of the closedness of regular 1-forms on a complex, projective, algebraic surface. Such an algebraic proof has been found only in the 1980s by Deligne and Illusie.
40#
發(fā)表于 2025-3-28 11:08:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
边坝县| 泸水县| 沽源县| 沾化县| 台北县| 泰和县| 仁怀市| 广汉市| 大理市| 二连浩特市| 晋江市| 永安市| 景宁| 独山县| 宜城市| 七台河市| 凤山市| 云浮市| 廊坊市| 张家界市| 同江市| 富源县| 固镇县| 惠水县| 汪清县| 临高县| 肃南| 嵊泗县| 施秉县| 泽州县| 金乡县| 逊克县| 敦化市| 成武县| 津市市| 安乡县| 封丘县| 淮南市| 博兴县| 沁水县| 双辽市|