找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Geometry and its Applications; Proceedings of the 8 Alexander Tikhomirov,Andrej Tyurin Conference proceedings 1994 Springer Fachm

[復(fù)制鏈接]
樓主: 教條
41#
發(fā)表于 2025-3-28 17:54:55 | 只看該作者
On the Stability of ,,,This brief note outlines some of the author’s results appearing in [5]. Suppose E is a vector bundle over a smooth irreducible projective curve C of genus g, and assume that global sections generate E. The natural evaluation map gives rise to a sequence of vector bundles: ..
42#
發(fā)表于 2025-3-28 19:27:12 | 只看該作者
43#
發(fā)表于 2025-3-29 01:18:45 | 只看該作者
Spatial Polygons and Stable Configurations of Points in the Projective Line,Let . be a variety of spatial polygons . = (a., a., ... , a.) with the vector-side .. ∈ ?. of a given length .. The polygons are considered up to motion in Euclidean space ?. .
44#
發(fā)表于 2025-3-29 06:12:35 | 只看該作者
Rigid Sheaves on Surfaces,Sheaves on surfaces can be divided into two main classes: sheaves with deformations and sheaves without deformations. Among the latter there are sheaves that have niether global nor infinitesimal deformations, in other words, the group Ext.(.) is trivial. These sheaves, called rigid, are the subject of the present paper.
45#
發(fā)表于 2025-3-29 09:18:57 | 只看該作者
46#
發(fā)表于 2025-3-29 13:13:49 | 只看該作者
On the Brauer Group of Real Algebraic Surfaces,In the paper of R. Sujatha and the author [N-S], the Brauer group of a real Enriques surface was studied. Here we continue the study of Brauer group with the remark that most of the results of these paper generally valid for an arbitrary smooth projective real algebraic surface.
47#
發(fā)表于 2025-3-29 16:50:17 | 只看該作者
48#
發(fā)表于 2025-3-29 23:14:51 | 只看該作者
Top Segre Class of a Standard Vector Bundle ,, on the Hilbert Scheme ,,, of a Surface ,,This work is a continuation of the paper [4] of the present collection. Using the results of [4] (and keeping the notations introduced there), we compute here the degree . of the top Segre class of a standard rank-4 vector bundle .. on the Hilbert scheme .. = ... of 0-dimensional subschemes of length 4 on a smooth projective surface ..
49#
發(fā)表于 2025-3-29 23:59:21 | 只看該作者
50#
發(fā)表于 2025-3-30 04:51:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东山县| 康乐县| 邛崃市| 南投市| 安福县| 嘉祥县| 天长市| 北宁市| 冕宁县| 长沙县| 荥阳市| 兴义市| 岑溪市| 遵化市| 石河子市| 西乡县| 苏尼特左旗| 安吉县| 明溪县| 诏安县| 汉寿县| 南和县| 海安县| 吉木乃县| 阿合奇县| 抚松县| 锡林浩特市| 南漳县| 三穗县| 清镇市| 安陆市| 玉门市| 同德县| 特克斯县| 崇阳县| 商洛市| 宝应县| 千阳县| 什邡市| 江津市| 铜川市|