找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Geometry IV; Linear Algebraic Gro A. N. Parshin,I. R. Shafarevich Book 1994 Springer-Verlag Berlin Heidelberg 1994 Algebra.Invari

[復(fù)制鏈接]
查看: 10732|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:50:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Algebraic Geometry IV
期刊簡(jiǎn)稱(chēng)Linear Algebraic Gro
影響因子2023A. N. Parshin,I. R. Shafarevich
視頻videohttp://file.papertrans.cn/153/152607/152607.mp4
學(xué)科分類(lèi)Encyclopaedia of Mathematical Sciences
圖書(shū)封面Titlebook: Algebraic Geometry IV; Linear Algebraic Gro A. N. Parshin,I. R. Shafarevich Book 1994 Springer-Verlag Berlin Heidelberg 1994 Algebra.Invari
影響因子The problems being solved by invariant theory are far-reaching generalizations and extensions of problems on the "reduction to canonical form" of various is almost the same thing, projective geometry. objects of linear algebra or, what Invariant theory has a ISO-year history, which has seen alternating periods of growth and stagnation, and changes in the formulation of problems, methods of solution, and fields of application. In the last two decades invariant theory has experienced a period of growth, stimulated by a previous development of the theory of algebraic groups and commutative algebra. It is now viewed as a branch of the theory of algebraic transformation groups (and under a broader interpretation can be identified with this theory). We will freely use the theory of algebraic groups, an exposition of which can be found, for example, in the first article of the present volume. We will also assume the reader is familiar with the basic concepts and simplest theorems of commutative algebra and algebraic geometry; when deeper results are needed, we will cite them in the text or provide suitable references.
Pindex Book 1994
The information of publication is updating

書(shū)目名稱(chēng)Algebraic Geometry IV影響因子(影響力)




書(shū)目名稱(chēng)Algebraic Geometry IV影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Algebraic Geometry IV網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Algebraic Geometry IV網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Algebraic Geometry IV被引頻次




書(shū)目名稱(chēng)Algebraic Geometry IV被引頻次學(xué)科排名




書(shū)目名稱(chēng)Algebraic Geometry IV年度引用




書(shū)目名稱(chēng)Algebraic Geometry IV年度引用學(xué)科排名




書(shū)目名稱(chēng)Algebraic Geometry IV讀者反饋




書(shū)目名稱(chēng)Algebraic Geometry IV讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:46:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:02:47 | 只看該作者
0938-0396 m" of various is almost the same thing, projective geometry. objects of linear algebra or, what Invariant theory has a ISO-year history, which has seen alternating periods of growth and stagnation, and changes in the formulation of problems, methods of solution, and fields of application. In the las
地板
發(fā)表于 2025-3-22 06:39:10 | 只看該作者
5#
發(fā)表于 2025-3-22 11:37:11 | 只看該作者
Tran Cao Son,Enrico Pontelli,Chiaki SakamaA linear algebraic group over an algebraically closed field . is a subgroup of a group GL.(.) of invertible . × .-matrices with entries in ., whose elements are precisely the solutions of a set of polynomial equations in the matrix coordinates. The present article contains a review of the theory of linear algebraic groups.
6#
發(fā)表于 2025-3-22 12:57:36 | 只看該作者
Detecting Conflicts in CommitmentsThe problems being solved by invariant theory are far-reaching generalizations and extensions of problems on the “reduction to canonical form” of various objects of linear algebra or, what is almost the same thing, projective geometry.
7#
發(fā)表于 2025-3-22 18:53:47 | 只看該作者
Linear Algebraic Groups,A linear algebraic group over an algebraically closed field . is a subgroup of a group GL.(.) of invertible . × .-matrices with entries in ., whose elements are precisely the solutions of a set of polynomial equations in the matrix coordinates. The present article contains a review of the theory of linear algebraic groups.
8#
發(fā)表于 2025-3-22 23:33:45 | 只看該作者
Invariant Theory,The problems being solved by invariant theory are far-reaching generalizations and extensions of problems on the “reduction to canonical form” of various objects of linear algebra or, what is almost the same thing, projective geometry.
9#
發(fā)表于 2025-3-23 01:26:13 | 只看該作者
Encyclopaedia of Mathematical Scienceshttp://image.papertrans.cn/a/image/152607.jpg
10#
發(fā)表于 2025-3-23 05:49:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 05:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
小金县| 牙克石市| 西安市| 杨浦区| 麟游县| 开远市| 青龙| 万年县| 红安县| 上杭县| 阳曲县| 璧山县| 清流县| 天津市| 香格里拉县| 察雅县| 应城市| 乌拉特前旗| 凤庆县| 明水县| 平昌县| 商都县| 施甸县| 肇东市| 年辖:市辖区| 光山县| 华阴市| 仪征市| 普宁市| 大渡口区| 南江县| 攀枝花市| 阿拉尔市| 灌云县| 崇明县| 黄骅市| 广西| 红桥区| 海晏县| 库车县| 麻阳|