找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Geometry; Part I: Schemes. Wit Ulrich G?rtz,Torsten Wedhorn Textbook 20101st edition Vieweg+Teubner Verlag | Springer Fachmedien

[復(fù)制鏈接]
查看: 53488|回復(fù): 56
樓主
發(fā)表于 2025-3-21 18:35:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Algebraic Geometry
期刊簡稱Part I: Schemes. Wit
影響因子2023Ulrich G?rtz,Torsten Wedhorn
視頻videohttp://file.papertrans.cn/153/152602/152602.mp4
發(fā)行地址Der Wegbegleiter in das Feld der modernen.algebraischen Geometrie im Bachelor/Master Studium
學(xué)科分類Advanced Lectures in Mathematics
圖書封面Titlebook: Algebraic Geometry; Part I: Schemes. Wit Ulrich G?rtz,Torsten Wedhorn Textbook 20101st edition Vieweg+Teubner Verlag | Springer Fachmedien
影響因子Algebraic geometry has its origin in the study of systems of polynomial equations f (x ,. . . ,x )=0, 1 1 n . . . f (x ,. . . ,x )=0. r 1 n Here the f ? k[X ,. . . ,X ] are polynomials in n variables with coe?cients in a ?eld k. i 1 n n ThesetofsolutionsisasubsetV(f ,. . . ,f)ofk . Polynomialequationsareomnipresent 1 r inandoutsidemathematics,andhavebeenstudiedsinceantiquity. Thefocusofalgebraic geometry is studying the geometric structure of their solution sets. n If the polynomials f are linear, then V(f ,. . . ,f ) is a subvector space of k. Its i 1 r “size” is measured by its dimension and it can be described as the kernel of the linear n r map k ? k , x=(x ,. . . ,x ) ? (f (x),. . . ,f (x)). 1 n 1 r For arbitrary polynomials, V(f ,. . . ,f ) is in general not a subvector space. To study 1 r it, one uses the close connection of geometry and algebra which is a key property of algebraic geometry, and whose ?rst manifestation is the following: If g = g f +. . . g f 1 1 r r is a linear combination of the f (with coe?cients g ? k[T ,. . . ,T ]), then we have i i 1 n V(f ,. . . ,f)= V(g,f ,. . . ,f ). Thus the set of solutions depends only on the ideal 1 r 1 r a? k[T ,. . . ,T ] gene
Pindex Textbook 20101st edition
The information of publication is updating

書目名稱Algebraic Geometry影響因子(影響力)




書目名稱Algebraic Geometry影響因子(影響力)學(xué)科排名




書目名稱Algebraic Geometry網(wǎng)絡(luò)公開度




書目名稱Algebraic Geometry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algebraic Geometry被引頻次




書目名稱Algebraic Geometry被引頻次學(xué)科排名




書目名稱Algebraic Geometry年度引用




書目名稱Algebraic Geometry年度引用學(xué)科排名




書目名稱Algebraic Geometry讀者反饋




書目名稱Algebraic Geometry讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:53:43 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:07:45 | 只看該作者
Schemes over fields, focus in this and the next chapter on the case of schemes of finite type over a field (although some of the definitions and results are formulated and proved in greater generality). In fact this is also an important building block for the study of arbitrary morphism of schemes . : . → . because we
地板
發(fā)表于 2025-3-22 08:24:25 | 只看該作者
Local Properties of Schemes,ffine space. Compare Figure 1.1: zooming in sufficiently, this is true for the pictured curve in all points except for the point where it self-intersects. However, while in differential geometry this can be used as the definition of a manifold, the Zariski topology is too coarse to capture appropria
5#
發(fā)表于 2025-3-22 08:57:30 | 只看該作者
Representable Functors,hat we obtain an embedding of the category of schemes into the category of such functors and thus we can consider schemes also as functors. Functors . that lie in the essential image of this embedding are called .. We say that a scheme . . . if .. It is one of the central problems within algebraic g
6#
發(fā)表于 2025-3-22 14:43:35 | 只看該作者
7#
發(fā)表于 2025-3-22 19:58:00 | 只看該作者
Prevarieties,ynomial equations with coefficients in an arbitrary ring but as a motivation and a guide line we will assume in this chapter that our ring of coefficients is an algebraically closed field .. In this case the theory has a particularly nice geometric flavor.
8#
發(fā)表于 2025-3-22 23:19:26 | 只看該作者
9#
發(fā)表于 2025-3-23 02:12:41 | 只看該作者
John Peterson,Elizabeth Bombergundamental for all which follows. Schemes arise by “gluing affine schemes”, similarly as prevarieties are obtained by gluing affine varieties. Therefore after the preparations in the previous chapter, the definition is very simple, see (3.1). As for varieties we define projective space (3.6) by glui
10#
發(fā)表于 2025-3-23 05:46:11 | 只看該作者
An Introduction to the Theory of Games focus in this and the next chapter on the case of schemes of finite type over a field (although some of the definitions and results are formulated and proved in greater generality). In fact this is also an important building block for the study of arbitrary morphism of schemes . : . → . because we
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
水城县| 双流县| 新郑市| 东宁县| 台中县| 锡林浩特市| 闵行区| 柘荣县| 海原县| 天水市| 九龙坡区| 体育| 平山县| 扶余县| 姜堰市| 襄汾县| 蒙自县| 罗定市| 双鸭山市| 寿宁县| 彝良县| 日照市| 西城区| 康定县| 温州市| 南郑县| 临澧县| 论坛| 牟定县| 观塘区| 云霄县| 蓝田县| 庄河市| 成武县| 柞水县| 弥勒县| 黄陵县| 九寨沟县| 玉屏| 右玉县| 靖宇县|