找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Foundations of Many-Valued Reasoning; Roberto L. O. Cignoli,Itala M. L. D’Ottaviano,Dani Book 2000 Springer Science+Business Med

[復(fù)制鏈接]
樓主: mature
21#
發(fā)表于 2025-3-25 03:35:37 | 只看該作者
Advanced topics,gularizations, and the correspondence between MV-algebras and AF .*-algebras. Strengthening Corollary 4.5.3, we shall show that the tautology problem in the infinite-valued calculus is in fact co-NP-complete, thus having the same complexity as it boolean counterpart. We shall give a proof of Di Nola’s representation theorem for all MV-algebras.
22#
發(fā)表于 2025-3-25 09:38:44 | 只看該作者
23#
發(fā)表于 2025-3-25 14:27:07 | 只看該作者
24#
發(fā)表于 2025-3-25 17:25:02 | 只看該作者
https://doi.org/10.1007/978-81-322-2364-1quipped with truncated addition . = min(1, .) and negation 1 - .. We show that every MV-algebra contains a natural lattice-order. The chapter culminates with Chang’s Subdirect Representation Theorem, stating that if an equation holds in all totally ordered MV-algebras, then the equation holds in all
25#
發(fā)表于 2025-3-25 22:09:17 | 只看該作者
26#
發(fā)表于 2025-3-26 02:17:33 | 只看該作者
https://doi.org/10.1007/978-94-009-0493-4 is satisfied by .. then the equation is automatically satisfied by all MV-algebras. As a consequence of the completeness theorem, .. is easily described as an MV-algebra of piecewise linear continuous [0,1]-valued functions defined over the cube [0, 1].. Known as McNaughton functions, they stand to
27#
發(fā)表于 2025-3-26 06:57:06 | 只看該作者
28#
發(fā)表于 2025-3-26 11:56:50 | 只看該作者
29#
發(fā)表于 2025-3-26 14:28:51 | 只看該作者
https://doi.org/10.1007/978-3-642-45686-2deals of an MV-algebra . and the ideals of the lattice .(.). A stonean ideal of a bounded distributive lattice . is an ideal generated by complemented elements of .. We shall show that the minimal prime lattice ideals of .(.), as well as the stonean ideals of L(.), are always ideals of ..
30#
發(fā)表于 2025-3-26 18:40:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 04:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
水富县| 孝感市| 吉林市| 合山市| 竹溪县| 乌海市| 东乡县| 罗甸县| 兴义市| 万盛区| 内黄县| 禹州市| 巴东县| 苍溪县| 祁东县| 井冈山市| 万安县| 方山县| 台北县| 红原县| 巴东县| 建昌县| 洛扎县| 湖北省| 东乡族自治县| 高州市| 石城县| 晴隆县| 柏乡县| 灵山县| 大安市| 菏泽市| 贵阳市| 黎城县| 清新县| 延川县| 临安市| 潮州市| 商城县| 咸阳市| 静安区|