找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Foundations of Many-Valued Reasoning; Roberto L. O. Cignoli,Itala M. L. D’Ottaviano,Dani Book 2000 Springer Science+Business Med

[復(fù)制鏈接]
樓主: mature
21#
發(fā)表于 2025-3-25 03:35:37 | 只看該作者
Advanced topics,gularizations, and the correspondence between MV-algebras and AF .*-algebras. Strengthening Corollary 4.5.3, we shall show that the tautology problem in the infinite-valued calculus is in fact co-NP-complete, thus having the same complexity as it boolean counterpart. We shall give a proof of Di Nola’s representation theorem for all MV-algebras.
22#
發(fā)表于 2025-3-25 09:38:44 | 只看該作者
23#
發(fā)表于 2025-3-25 14:27:07 | 只看該作者
24#
發(fā)表于 2025-3-25 17:25:02 | 只看該作者
https://doi.org/10.1007/978-81-322-2364-1quipped with truncated addition . = min(1, .) and negation 1 - .. We show that every MV-algebra contains a natural lattice-order. The chapter culminates with Chang’s Subdirect Representation Theorem, stating that if an equation holds in all totally ordered MV-algebras, then the equation holds in all
25#
發(fā)表于 2025-3-25 22:09:17 | 只看該作者
26#
發(fā)表于 2025-3-26 02:17:33 | 只看該作者
https://doi.org/10.1007/978-94-009-0493-4 is satisfied by .. then the equation is automatically satisfied by all MV-algebras. As a consequence of the completeness theorem, .. is easily described as an MV-algebra of piecewise linear continuous [0,1]-valued functions defined over the cube [0, 1].. Known as McNaughton functions, they stand to
27#
發(fā)表于 2025-3-26 06:57:06 | 只看該作者
28#
發(fā)表于 2025-3-26 11:56:50 | 只看該作者
29#
發(fā)表于 2025-3-26 14:28:51 | 只看該作者
https://doi.org/10.1007/978-3-642-45686-2deals of an MV-algebra . and the ideals of the lattice .(.). A stonean ideal of a bounded distributive lattice . is an ideal generated by complemented elements of .. We shall show that the minimal prime lattice ideals of .(.), as well as the stonean ideals of L(.), are always ideals of ..
30#
發(fā)表于 2025-3-26 18:40:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 04:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
堆龙德庆县| 阆中市| 来凤县| 龙陵县| 宜昌市| 苍梧县| 锡林浩特市| 阳城县| 永宁县| 从化市| 昌平区| 都江堰市| 沂南县| 海晏县| 如皋市| 西藏| 临洮县| 连云港市| 沙洋县| 大渡口区| 洛宁县| 始兴县| 潼关县| 潞城市| 德兴市| 上蔡县| 独山县| 稻城县| 金昌市| 湾仔区| 灵寿县| 循化| 石首市| 哈密市| 彭阳县| 岑溪市| 嘉禾县| 长沙县| 安图县| 综艺| 米脂县|