找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Curves; Towards Moduli Space Maxim E. Kazaryan,Sergei K. Lando,Victor V.‘Prasol Textbook 2018 Springer Nature Switzerland AG 2018

[復(fù)制鏈接]
樓主: deduce
11#
發(fā)表于 2025-3-23 13:15:05 | 只看該作者
Curves in Projective Spaces,nsional space there is much more freedom. However, to define curves in . and higher dimensional projective spaces is more difficult than in the plane. In this chapter, we discuss methods of defining such curves.
12#
發(fā)表于 2025-3-23 16:01:34 | 只看該作者
Differential 1-Forms on Curves,ean primarily spaces of meromorphic functions, vector fields, and differential forms. These spaces are endowed with natural algebraic structures, which allows one to express properties of curves in algebraic terms.
13#
發(fā)表于 2025-3-23 21:00:29 | 只看該作者
14#
發(fā)表于 2025-3-24 00:16:54 | 只看該作者
15#
發(fā)表于 2025-3-24 02:59:28 | 只看該作者
Exam Problems,hematics of the Higher School of Economics in 2010–2014. Most of these problems were given as exercises in the main text, and we have collected them here for the reader’s convenience. Along with problems, we also give a list of exam questions.
16#
發(fā)表于 2025-3-24 06:41:22 | 只看該作者
https://doi.org/10.1007/978-3-030-98132-7Algebraic curves are curves given by polynomial equations in projective spaces. On the other hand, algebraic curves are one-dimensional complex manifolds, and to define them, there is no need to embed them anywhere. We will consider various ways to define curves and discuss how one can decide whether they result in the same curve.
17#
發(fā)表于 2025-3-24 10:55:56 | 只看該作者
https://doi.org/10.1007/978-3-642-25544-1The Riemann–Roch theorem establishes a relationship between two numbers: the dimension .(.) of the vector space .(.) of meromorphic functions with divisor ≥?. and the dimension .(.) of the space ..(.) of meromorphic 1-forms with divisor ≥?..
18#
發(fā)表于 2025-3-24 16:15:56 | 只看該作者
Decision Making in Complex Systems,In the first section of this chapter, we give a proof of the Riemann–Roch formula .(.)???.(.???.)?=?.???.?+?1. In the second section, we present a geometric interpretation of the quantities occurring in the Riemann–Roch formula in terms of canonical curves.
19#
發(fā)表于 2025-3-24 20:30:42 | 只看該作者
20#
發(fā)表于 2025-3-25 00:59:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
于田县| 开阳县| 多伦县| 阿瓦提县| 蒲江县| 崇仁县| 伊金霍洛旗| 尚志市| 河津市| 阿城市| 哈尔滨市| 福建省| 绥滨县| 鄂伦春自治旗| 灵宝市| 绵竹市| 瑞金市| 惠东县| 长春市| 海林市| 吴堡县| 南召县| 务川| 山西省| 台东县| 衡东县| 义乌市| 渝中区| 响水县| 剑阁县| 兴化市| 固始县| 马尔康县| 永清县| 琼海市| 台南县| 宝清县| 包头市| 西峡县| 全南县| 阿鲁科尔沁旗|